Sums of five, seven and nine squares

被引:28
作者
Cooper, S [1 ]
机构
[1] Massey Univ Albany, Inst Informat & Math Sci, Auckland, New Zealand
关键词
Hecke operator; modular forms of half integer weight; sums of squares;
D O I
10.1023/A:1021175617574
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let r(k)(n) denote the number of representations of an integer n as a sum of k squares. We prove that [GRAPHICS] where [GRAPHICS] Here n = 2(lambda)Pi(p) p(lambdap) is the prime factorisation of n, n' is the square-free part of n, the products are taken over the odd primes p, and (n/p) is the Legendre symbol. Some similar formulas for r(7)(n) and r(9)(n) are also proved.
引用
收藏
页码:469 / 490
页数:22
相关论文
共 29 条
[1]  
[Anonymous], GESAMMELTE WERKE
[2]   Formulae associated with 5, 7, 9 and 11 squares [J].
Barrucand, P ;
Hirschhorn, MD .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2002, 65 (03) :503-510
[3]  
Berndt B. C., 1989, Ramanujan's Notebooks
[4]  
Berndt B. C., 1991, Ramanujan's Notebooks
[5]  
COHEN H, 1973, CR ACAD SCI A MATH, V277, P827
[6]  
COOPER S, 2002, RES LETT INFORMATION, V3, P37
[7]  
COOPER S, 2001, CONT MATH, V291, P115
[8]  
Dickson L.E., 1952, HIST THEORY NUMBERS, V2
[9]  
Glaisher JWL, 1907, P LOND MATH SOC, V5, P479
[10]  
Hardy GH, 1920, T AM MATH SOC, V21, P255