On the connection between the order of fractional calculus and the dimensions of a fractal function

被引:53
作者
Yao, K [1 ]
Su, WY
Zhou, SP
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
[2] Zhejiang Inst Sci & Technol, Math Inst, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/j.chaos.2004.05.037
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The present paper investigates the fractional calculus of a type of Weierstrass functions. It is proven that there exists some linear connection between the order of the fractional calculus and the dimensions of the graphs of the Weierstrass function. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:621 / 629
页数:9
相关论文
共 18 条
[1]  
[Anonymous], 1983, New York
[2]   Quantum gravity from descriptive set theory [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 2004, 19 (05) :1339-1344
[3]   How gravitational instanton could solve the mass problem of the standard model of high energy particle physics [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 2004, 21 (01) :249-260
[4]  
Falconer J, 1990, FRACTAL GEOMETRY MAT
[5]   FRACTAL DIMENSIONS AND SINGULARITIES OF THE WEIERSTRASS TYPE FUNCTIONS [J].
HU, TY ;
LAU, KS .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 335 (02) :649-665
[6]  
Inovane G., 2004, CHAOS SOLITON FRACT, V20, P657
[7]   Fractional differentiability of nowhere differentiable functions and dimensions [J].
Kolwankar, KM ;
Gangal, AD .
CHAOS, 1996, 6 (04) :505-513
[8]   On the unification of all fundamental forces in a fundamentally fuzzy Cantorian ε(∞) manifold and high energy particle physics [J].
Marek-Crnjac, L .
CHAOS SOLITONS & FRACTALS, 2004, 20 (04) :669-682
[9]  
Miller K.S.B. Ross., 1993, INTRO FRACTIONAL CAL, V1st, P384
[10]  
Oldham K B, 1974, FRACTIONAL CALCULUS