Comparative Study on the Defects of Kaolinite from America, Brazil and China Applied for Paper Coating: XRD and Refinement by Rietveld Method

被引:2
作者
Zhu Xiaoyan [1 ,2 ]
Zhu Zhichao [1 ]
Lei Xinrong [1 ,2 ]
Yan Chunjie [1 ,2 ]
Chen Jieyu [1 ,2 ]
机构
[1] China Univ Geosci, Fac Mat Sci & Chem, Wuhan 430074, Peoples R China
[2] China Univ Geosci, Minist Educ, Engn Res Ctr Nanogeomat, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
X-ray diffraction; rietveld method; defects; distortion; CRYSTAL-STRUCTURES;
D O I
10.1007/s11595-017-1605-y
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Three kaolinite samples applied for paper coating were collected from America (KA), Brazil (KB), and China (KC), respectively. Parameters such as average bond length of Si-O and Al-O (l((Si-O)) and l ((Al-O))), tetrahedral rotation angles (alpha), changes of tetrahedral flattening angles (tau) and octahedral flattening angles (psi) comparative to ideal angle, particle layer thickness (T) and basal z corrugation (Delta z) were analyzed by XRD and Rietveld method. The experimental results indicated that Delta z(KA) > Delta z(KC) > Delta z(KB). KB has a regular structure and KA has a disorder structure, alpha(KA) > alpha(KC) > alpha(KB), Delta tau(KA) > Delta tau(KC) > Delta tau(KB), and Delta psi(KA) > Delta psi(KB) > Delta psi(KC). KA has unstable tetrahedron and octahedron. KB and KC have stable tetrahedron and octahedron, respectively. In the process of manufacture, kaolinite structure may be broken from places with unstable tetrahedron and octahedron. l(Si-O)(KA) > l(Si-O)(KB) > l(Si-O)(KC) and l(Al-O)(KA) > l(Al-O)(KC) > l(Al-O)(KB). What only considered is the effect of bond length, KA may be most easily broken in the manufacture. Compared with bond lengths of KA and KB, Si-O, and Al-O of KB and KC may be easily broken, respectively. T-KA < T-KC < T-KB. KB should be delaminated to finer particles, or it would hinder its dispersibility.
引用
收藏
页码:373 / 377
页数:5
相关论文
共 19 条
[1]   Structure refinement of synthetic deuterated kaolinite by Rietveld analysis using time-of-flight neutron powder diffraction data [J].
Akiba, E ;
Hayakawa, H ;
Hayashi, S ;
Miyawaki, R ;
Tomura, S ;
Shibasaki, Y ;
Izumi, F ;
Asano, H ;
Kamiyama, T .
CLAYS AND CLAY MINERALS, 1997, 45 (06) :781-788
[2]   RIETVELD REFINEMENT OF NON-HYDROGEN ATOMIC POSITIONS IN KAOLINITE [J].
BISH, DL ;
VONDREELE, RB .
CLAYS AND CLAY MINERALS, 1989, 37 (04) :289-296
[3]  
Brindley GW, 1980, CRYSTAL STRUCTURES C, P3
[4]   Hydrogen deficiency in Ti-rich biotite from anatectic metapelites (El Joyazo, SE Spain): Crystal-chemical aspects and implications for high-temperature petrogenesis [J].
Cesare, B ;
Cruciani, G ;
Russo, U .
AMERICAN MINERALOGIST, 2003, 88 (04) :583-595
[5]   Electron crystallographic study of a kaolinite single crystal [J].
Cora, Ildiko ;
Dodony, Istvan ;
Pekker, Peter .
APPLIED CLAY SCIENCE, 2014, 90 :6-10
[6]   CRYSTAL-STRUCTURES OF 2M1 PHENGITE AND 2M1 MUSCOVITE [J].
GUVEN, N .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE KRISTALLGEOMETRIE KRISTALLPHYSIK KRISTALLCHEMIE, 1971, 134 (3-4) :196-&
[7]  
HAZEN RM, 1973, AM MINERAL, V58, P889
[8]  
He MC, 2009, CHINESE PHYS LETT, V26, DOI 10.1088/0256-307X/26/5/059101
[9]   Single Kaolinite Nanometer Layers Prepared by an In Situ Polymerization-Exfoliation Process in the Presence of Ionic Liquids [J].
Letaief, Sadok ;
Leclercq, Jerome ;
Liu, Yun ;
Detellier, Christian .
LANGMUIR, 2011, 27 (24) :15248-15254
[10]   Surface force measurements at kaolinite edge surfaces using atomic force microscopy [J].
Liu, Jing ;
Sandaklie-Nikolova, Linda ;
Wang, Xuming ;
Miller, Jan D. .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2014, 420 :35-40