Design and operational experience of a microwave cavity axion detector for the 20-100 μeV range

被引:62
作者
Al Kenany, S. [1 ]
Anil, M. A. [2 ,3 ,4 ]
Backes, K. M. [1 ]
Brubaker, B. M. [5 ]
Cahn, S. B. [5 ]
Carosi, G. [6 ]
Gurevich, Y. V. [5 ]
Kindel, W. F. [2 ,3 ,4 ]
Lamoreaux, S. K. [5 ]
Lehnert, K. W. [2 ,3 ,4 ]
Lewis, S. M. [1 ]
Malnou, M. [2 ,3 ,4 ]
Palken, D. A. [2 ,3 ,4 ]
Rapidis, N. M. [1 ]
Root, J. R. [1 ]
Simanovskaia, M. [1 ]
Shokair, T. M. [1 ]
Urdinaran, I. [1 ]
van Bibber, K. A. [1 ]
Zhong, L. [5 ]
机构
[1] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA
[2] Univ Colorado, JILA, Boulder, CO 80309 USA
[3] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[4] NIST, Boulder, CO 80309 USA
[5] Yale Univ, Dept Phys, New Haven, CT 06511 USA
[6] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94551 USA
基金
美国国家科学基金会;
关键词
Axion; Dark matter; Josephson parametric amplifier; Microwave cavity; Standard quantum limit; Superconducting magnet; INVISIBLE-AXION; SEARCHES;
D O I
10.1016/j.nima.2017.02.012
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We describe a dark matter axion detector designed, constructed, and operated both as an innovation platform for new cavity and amplifier technologies and as a data pathfinder in the 5-25 GHz range ( similar to 20-100 mu eV). The platform is small but flexible to facilitate the development of new microwave cavity and amplifier concepts in an operational environment. The experiment has recently completed its first data production; it is the first microwave cavity axion search to deploy a Josephson parametric amplifier and a dilution refrigerator to achieve near-quantum limited performance.
引用
收藏
页码:11 / 24
页数:14
相关论文
共 22 条
[1]  
[Anonymous], PHYS REV LETT, V118
[2]   Design and performance of the ADMX SQUID-based microwave receiver [J].
Asztalos, S. J. ;
Carosi, G. ;
Hagmann, C. ;
Kinion, D. ;
van Bibber, K. ;
Hotz, M. ;
Rosenberg, L. J. ;
Rybka, G. ;
Wagner, A. ;
Hoskins, J. ;
Martin, C. ;
Sullivan, N. S. ;
Tanner, D. B. ;
Bradley, R. ;
Clarke, John .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2011, 656 (01) :39-44
[3]   Calculation of the axion mass based on high-temperature lattice quantum chromodynamics [J].
Borsanyi, S. ;
Fodor, Z. ;
Guenther, J. ;
Kampert, K. -H. ;
Katz, S. D. ;
Kawanai, T. ;
Kovacs, T. G. ;
Mages, S. W. ;
Pasztor, A. ;
Pittler, F. ;
Redondo, J. ;
Ringwald, A. ;
Szabo, K. K. .
NATURE, 2016, 539 (7627) :69-+
[4]   First Results from a Microwave Cavity Axion Search at 24 μeV [J].
Brubaker, B. M. ;
Zhong, L. ;
Gurevich, Y. V. ;
Cahn, S. B. ;
Lamoreaux, S. K. ;
Simanovskaia, M. ;
Root, J. R. ;
Lewis, S. M. ;
Al Kenany, S. ;
Backes, K. M. ;
Urdinaran, I. ;
Rapidis, N. M. ;
Shokair, T. M. ;
van Bibber, K. A. ;
Palken, D. A. ;
Malnou, M. ;
Kindel, W. F. ;
Anil, M. A. ;
Lehnert, K. W. ;
Carosi, G. .
PHYSICAL REVIEW LETTERS, 2017, 118 (06)
[5]   QUANTUM LIMITS ON NOISE IN LINEAR-AMPLIFIERS [J].
CAVES, CM .
PHYSICAL REVIEW D, 1982, 26 (08) :1817-1839
[6]   THE MEASUREMENT OF THERMAL RADIATION AT MICROWAVE FREQUENCIES [J].
DICKE, RH .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1946, 17 (07) :268-275
[7]   High performance distributed Bragg reflector microwave resonator [J].
Flory, CA ;
Taber, RC .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 1997, 44 (02) :486-495
[8]   Experimental Searches for the Axion and Axion-Like Particles [J].
Graham, Peter W. ;
Irastorza, Igor G. ;
Lamoreaux, Steven K. ;
Lindner, Axel ;
van Bibber, Karl A. .
ANNUAL REVIEW OF NUCLEAR AND PARTICLE SCIENCE, VOL 65, 2015, 65 :485-514
[9]   CAVITY DESIGN FOR A COSMIC AXION DETECTOR [J].
HAGMANN, C ;
SIKIVIE, P ;
SULLIVAN, N ;
TANNER, DB ;
CHO, SI .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1990, 61 (03) :1076-1085
[10]   CALCULATIONS FOR COSMIC AXION DETECTION [J].
KRAUSS, L ;
MOODY, J ;
WILCZEK, F ;
MORRIS, DE .
PHYSICAL REVIEW LETTERS, 1985, 55 (17) :1797-1800