Exact solutions of a generalized Boussinesq equation

被引:20
作者
Bruzon, M. S. [1 ]
机构
[1] Univ Cadiz, Dept Matemat, Cadiz, Spain
关键词
partial differential equation; symmetry; solution; DOUBLE DISPERSION-EQUATION; NONCLASSICAL SYMMETRIES; REDUCTIONS;
D O I
10.1007/s11232-009-0079-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze a generalized Boussinesq equation using the theory of symmetry reductions of partial differential equations. The Lie symmetry group analysis of this equation shows that the equation has only a two-parameter point symmetry group corresponding to traveling-wave solutions. To obtain exact solutions, we use two procedures: a direct method and the G'/G-expansion method. We express the traveling-wave solutions in terms of hyperbolic, trigonometric, and rational functions.
引用
收藏
页码:894 / 904
页数:11
相关论文
共 23 条
[1]  
[Anonymous], 1993, GRAD TEXTS MATH
[2]  
[Anonymous], 1948, Handbook of Mathematical Functions withFormulas, Graphs, and Mathematical Tables, DOI DOI 10.1119/1.15378
[3]  
[Anonymous], 1872, J MATH PURE APPL
[4]  
BOUSSINESQ MJ, 1871, CR HEBD ACAD SCI, V72, P755
[5]   Applying a new algorithm to derive nonclassical symmetries [J].
Bruzon, M. S. ;
Gandarias, M. L. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2008, 13 (03) :517-523
[6]   Applying a new algorithm to derive nonclassical symmetries [J].
Bruzon, M. S. ;
Gandarias, M. L. .
NONLINEAR SCIENCE AND COMPLEXITY, 2007, 1 :7-+
[7]   Similarity reductions of an optical model [J].
Bruzón, MS ;
Gandarias, ML .
SPT 2004: SYMMETRY AND PERTURBATION THEORY, 2005, :59-66
[8]  
BRUZON MS, 2009, P APPL MATH MECH, V8, P10587, DOI 10.1002/pamm.200810587
[9]  
CAMACHO JC, CHAOS SOLIT IN PRESS
[10]   Initial boundary value problem of the generalized cubic double dispersion equation [J].
Chen, GW ;
Wang, YP ;
Wang, SB .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 299 (02) :563-577