Every Meromorphic Function is the Gauss Map of a Conformal Minimal Surface

被引:6
作者
Alarcon, A. [1 ,2 ]
Forstneric, F. [3 ,4 ]
Lopez, F. J. [1 ,2 ]
机构
[1] Univ Granada, Dept Geometria & Topol, Campus Fuentenueva S-N, E-18071 Granada, Spain
[2] Univ Granada, Inst Matemat IEMath GR, Campus Fuentenueva S-N, E-18071 Granada, Spain
[3] Univ Ljubljana, Fac Math & Phys, Jadranska 19, Ljubljana 1000, Slovenia
[4] Inst Math Phys & Mech, Jadranska 19, Ljubljana 1000, Slovenia
关键词
Riemann surface; Complex curve; Minimal surface; Gauss map;
D O I
10.1007/s12220-017-9948-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be an open Riemann surface. We prove that every meromorphic function on M is the complex Gauss map of a conformal minimal immersion M. R3 which may furthermore be chosen as the real part of a holomorphic null curve M. C3. Analogous results are proved for conformalminimal immersions M. Rn for any n > 3. We also show that every conformal minimal immersion M. Rn is isotopic through conformal minimal immersions M. Rn to a flat one, and we identify the path connected components of the space of all conformal minimal immersions M. Rn for any n >= 3.
引用
收藏
页码:3011 / 3038
页数:28
相关论文
共 24 条
[1]   Every conformal minimal surface in R3 is isotopic to the real part of a holomorphic null curve [J].
Alarcon, Antonio ;
Forstneric, Franc .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2018, 740 :77-109
[2]   Representing de Rham cohomology classes on an open Riemann surface by holomorphic forms [J].
Alarcon, Antonio ;
Larusson, Finnur .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2017, 28 (09)
[3]   Embedded minimal surfaces in Rn [J].
Alarcon, Antonio ;
Forstneric, Franc ;
Lopez, Francisco J. .
MATHEMATISCHE ZEITSCHRIFT, 2016, 283 (1-2) :1-24
[4]   Null curves and directed immersions of open Riemann surfaces [J].
Alarcon, Antonio ;
Forstneric, Franc .
INVENTIONES MATHEMATICAE, 2014, 196 (03) :733-771
[5]   SIZE OF A STABLE MINIMAL SURFACE IN R3 [J].
BARBOSA, JL ;
DOCARMO, M .
AMERICAN JOURNAL OF MATHEMATICS, 1976, 98 (02) :515-528
[6]  
Forstneri F, 2017, ERGEBNISSE MATH IHRE, VVolume56
[7]  
Forstneri F., COMMUN ANAL GEOM
[8]  
Forstneric F, 2007, ASIAN J MATH, V11, P113
[9]  
Forstneric F, 2011, NEW YORK J MATH, V17A, P11
[10]   Invariance of the Parametric Oka Property [J].
Forstneric, Franc .
COMPLEX ANALYSIS: SEVERAL COMPLEX VARIABLES AND CONNECTIONS WITH PDE THEORY AND GEOMETRY, 2010, :125-144