Remote sensing of water cloud parameters using neural networks

被引:19
作者
Cerdena, Abidan [1 ]
Gonzalez, Albano [1 ]
Perez, Juan C. [1 ]
机构
[1] Univ La Laguna, Dept Fis FEES, Remote Sensing Lab, E-38200 San Cristobal la Laguna, Spain
关键词
D O I
10.1175/JTECH1943.1
中图分类号
P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
In this work a method for determining the micro- and macrophysical properties of oceanic stratocumulus clouds is presented. It is based on the inversion of a radiative transfer model that computes the albedos and brightness temperatures in the NOAA Advanced Very High Resolution Radiometer (AVHRR) channels. This inversion is performed using artificial neural networks (ANNs), which are trained and optimized by genetic algorithms to fit theoretical computations. A detailed study of the ANN parameters and training algorithms demonstrates the convenience of using the "backpropagation with momentum" method. The proposed retrieval method is applied to daytime and nighttime imagery and was validated using ground data collected in Tenerife (Canary Islands), obtaining a good agreement.
引用
收藏
页码:52 / 63
页数:12
相关论文
共 50 条
[41]   Multiscale Cloud Detection in Remote Sensing Images Using a Dual Convolutional Neural Network [J].
Luotamo, Markku ;
Metsamaki, Sari ;
Klami, Arto .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (06) :4972-4983
[42]   Remote sensing of inland water quality parameters [J].
Zhang, H ;
Zeng, GM ;
Huang, GH ;
Li, ZW ;
Zhao, X .
ENERGY & ENVIRONMENT - A WORLD OF CHALLENGES AND OPPORTUNITIES, PROCEEDINGS, 2003, :197-201
[43]   Land Cover Classification Using Remote Sensing and Supervised Convolutional Neural Networks [J].
Perez-Guerra, Jheison ;
Herrera-Ruiz, Veronica ;
Carlos Gonzalez-Velez, Juan ;
David Martinez-Vargas, Juan ;
Constanza Torres-Madronero, Maria .
ADVANCES IN COMPUTING, CCC 2023, 2024, 1924 :13-24
[44]   Remote sensing data classification using tolerant rough set and neural networks [J].
Jianwen Ma ;
Bagan Hasi .
Science in China Series D: Earth Sciences, 2005, 48 :2251-2259
[45]   Aircraft detection in remote sensing images using cascade convolutional neural networks [J].
Yu D. ;
Guo H. ;
Zhang B. ;
Zhao C. ;
Lu J. .
Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2019, 48 (08) :1046-1058
[46]   Supervised remote sensing image segmentation using boosted convolutional neural networks [J].
Basaeed, Essa ;
Bhaskar, Harish ;
Al-Mualla, Mohammed .
KNOWLEDGE-BASED SYSTEMS, 2016, 99 :19-27
[47]   First Results from Remote Sensing of the Atmosphere Using Artificial Neural Networks [J].
Mudroch, Martin ;
Pechac, Pavel ;
Grabner, Martin ;
Kvicera, Vaclav .
2009 3RD EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION, VOLS 1-6, 2009, :1356-+
[48]   Landslide Detection and Segmentation Using Remote Sensing Images and Deep Neural Networks [J].
Le, Cam ;
Pham, Lam ;
Lampert, Jasmin ;
Schloegl, Matthias ;
Schindler, Alexander .
2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2024), 2024, :9582-9586
[49]   REMOTE-SENSING SPECTROSCOPIC METHOD FOR ESTIMATION OF CLOUD PARAMETERS [J].
DVORYASHIN, SV .
IZVESTIYA AKADEMII NAUK FIZIKA ATMOSFERY I OKEANA, 1994, 30 (02) :260-263
[50]   Remote sensing data classification using tolerant rough set and neural networks [J].
MA Jianwen HASI Bagan State Key Laboratory of Remote Sensing Science Institute of Remote Sensing Applications Chinese Academy of Sciences Beijing China .
Science in China(Series D:Earth Sciences), 2005, (12) :2251-2259