Tuning the Performance of Metallic Auxetic Metamaterials by Using Buckling and Plasticity

被引:69
作者
Ghaedizadeh, Arash [1 ]
Shen, Jianhu [1 ]
Ren, Xin [1 ,2 ]
Xie, Yi Min [1 ]
机构
[1] RMIT Univ, Sch Engn, Ctr Innovat Structures & Mat, GPO Box 2476, Melbourne, Vic 3001, Australia
[2] Cent S Univ, Sch Traff & Transportat Engn, Key Lab Traff Safety Track, Changsha 410075, Hunan, Peoples R China
基金
澳大利亚研究理事会;
关键词
mechanical metamaterial; auxetic; buckling; large deformation; plasticity; NEGATIVE POISSONS RATIO; SOFT METAMATERIALS; BEHAVIOR; FOAMS;
D O I
10.3390/ma9010054
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Metallic auxetic metamaterials are of great potential to be used in many applications because of their superior mechanical performance to elastomer-based auxetic materials. Due to the limited knowledge on this new type of materials under large plastic deformation, the implementation of such materials in practical applications remains elusive. In contrast to the elastomer-based metamaterials, metallic ones possess new features as a result of the nonlinear deformation of their metallic microstructures under large deformation. The loss of auxetic behavior in metallic metamaterials led us to carry out a numerical and experimental study to investigate the mechanism of the observed phenomenon. A general approach was proposed to tune the performance of auxetic metallic metamaterials undergoing large plastic deformation using buckling behavior and the plasticity of base material. Both experiments and finite element simulations were used to verify the effectiveness of the developed approach. By employing this approach, a 2D auxetic metamaterial was derived from a regular square lattice. Then, by altering the initial geometry of microstructure with the desired buckling pattern, the metallic metamaterials exhibit auxetic behavior with tuneable mechanical properties. A systematic parametric study using the validated finite element models was conducted to reveal the novel features of metallic auxetic metamaterials undergoing large plastic deformation. The results of this study provide a useful guideline for the design of 2D metallic auxetic metamaterials for various applications.
引用
收藏
页数:17
相关论文
共 42 条
[1]   An auxetic filter: A tuneable filter displaying enhanced size selectivity or defouling properties [J].
Alderson, A ;
Rasburn, J ;
Ameer-Beg, S ;
Mullarkey, PG ;
Perrie, W ;
Evans, KE .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2000, 39 (03) :654-665
[2]  
[Anonymous], SMART MAT STRUCT
[3]   Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram [J].
Avalle, M ;
Belingardi, G ;
Montanini, R .
INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2001, 25 (05) :455-472
[4]   3D Soft Metamaterials with Negative Poisson's Ratio [J].
Babaee, Sahab ;
Shim, Jongmin ;
Weaver, James C. ;
Chen, Elizabeth R. ;
Patel, Nikita ;
Bertoldi, Katia .
ADVANCED MATERIALS, 2013, 25 (36) :5044-5049
[5]   Mechanics of deformation-triggered pattern transformations and superelastic behavior in periodic elastomeric structures [J].
Bertoldi, K. ;
Boyce, M. C. ;
Deschanel, S. ;
Prange, S. M. ;
Mullin, T. .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2008, 56 (08) :2642-2668
[6]   Negative Poisson's Ratio Behavior Induced by an Elastic Instability [J].
Bertoldi, Katia ;
Reis, Pedro M. ;
Willshaw, Stephen ;
Mullin, Tom .
ADVANCED MATERIALS, 2010, 22 (03) :361-+
[7]   MICROPOROUS MATERIALS WITH NEGATIVE POISSON RATIOS .1. MICROSTRUCTURE AND MECHANICAL-PROPERTIES [J].
CADDOCK, BD ;
EVANS, KE .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1989, 22 (12) :1877-1882
[8]   Micromechanical analysis of dynamic behavior of conventional and negative Poisson's ratio foams [J].
Chen, CP ;
Lakes, RS .
JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 1996, 118 (03) :285-288
[9]  
CHOI JB, 1991, CELL POLYM, V10, P205
[10]   A review of the manufacture, mechanical properties and potential applications of auxetic foams [J].
Critchley, Richard ;
Corni, Ilaria ;
Wharton, Julian A. ;
Walsh, Frank C. ;
Wood, Robert J. K. ;
Stokes, Keith R. .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2013, 250 (10) :1963-1982