Charge and spin transport in strongly correlated one-dimensional quantum systems driven far from equilibrium

被引:106
|
作者
Benenti, Giuliano [1 ,2 ,3 ]
Casati, Giulio [1 ,2 ,3 ,4 ]
Prosen, Tomaz [5 ]
Rossini, Davide [6 ]
Znidaric, Marko [5 ]
机构
[1] Univ Insubria, CNISM, Ctr Nonlinear & Complex Syst, I-22100 Como, Italy
[2] Univ Insubria, CNR, INFM, I-22100 Como, Italy
[3] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy
[4] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
[5] Univ Ljubljana, Fac Math & Phys, Dept Phys, SI-1000 Ljubljana, Slovenia
[6] Int Sch Adv Studies SISSA, I-34014 Trieste, Italy
关键词
THERMAL CONDUCTION; COULOMB-BLOCKADE; FOURIERS LAW; DYNAMICS; STATES; CHAIN;
D O I
10.1103/PhysRevB.80.035110
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the charge conductivity in one-dimensional prototype models of interacting particles, such as the Hubbard and the t-V spinless fermion models, when coupled to some external baths injecting and extracting particles at the boundaries. We show that, if these systems are driven far from equilibrium, a negative differential conductivity regime can arise. The above electronic models can be mapped into Heisenberg-like spin ladders coupled to two magnetic baths, so that charge transport mechanisms are explained in terms of quantum spin transport. The negative differential conductivity is due to oppositely polarized ferromagnetic domains that arise at the edges of the chain and therefore inhibit spin transport: we propose a qualitative understanding of the phenomenon by analyzing the localization of one-magnon excitations created at the borders of a ferromagnetic region. We also show that negative differential conductivity is stable against breaking of integrability. Numerical simulations of nonequilibrium time evolution have been performed by employing a Monte Carlo wave function approach and a matrix product operator formalism.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Observing separate spin and charge Fermi seas in a strongly correlated one-dimensional conductor
    Vianez, Pedro M. T.
    Jin, Yiqing
    Moreno, Maria
    Anirban, Ankita S.
    Anthore, Anne
    Tan, Wooi Kiat
    Griffiths, Jonathan P.
    Farrer, Ian
    Ritchie, David A.
    Schofield, Andrew J.
    Tsyplyatyev, Oleksandr
    Ford, Christopher J. B.
    SCIENCE ADVANCES, 2022, 8 (24)
  • [2] Diffusion and Ballistic Transport in One-Dimensional Quantum Systems
    Sirker, J.
    Pereira, R. G.
    Affleck, I.
    PHYSICAL REVIEW LETTERS, 2009, 103 (21)
  • [3] Far-from-Equilibrium Spin Transport in Heisenberg Quantum Magnets
    Hild, Sebastian
    Fukuhara, Takeshi
    Schauss, Peter
    Zeiher, Johannes
    Knap, Michael
    Demler, Eugene
    Bloch, Immanuel
    Gross, Christian
    PHYSICAL REVIEW LETTERS, 2014, 113 (14)
  • [4] ORDERING FROM FRUSTRATION IN A STRONGLY CORRELATED ONE-DIMENSIONAL SYSTEM
    Lal, Siddhartha
    Laad, Mukul S.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2009, 23 (18): : 3485 - 3506
  • [5] Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas
    Trotzky, S.
    Chen, Y-A.
    Flesch, A.
    McCulloch, I. P.
    Schollwoeck, U.
    Eisert, J.
    Bloch, I.
    NATURE PHYSICS, 2012, 8 (04) : 325 - 330
  • [6] Spin transport of the quantum integer spin S one-dimensional Heisenberg antiferromagnet coupled to phonons
    Lima, Leonardo S.
    EUROPEAN PHYSICAL JOURNAL B, 2013, 86 (03)
  • [7] Spin-charge-separated quasiparticles in one-dimensional quantum fluids
    Essler, F. H. L.
    Pereira, R. G.
    Schneider, I.
    PHYSICAL REVIEW B, 2015, 91 (24)
  • [8] Quantum transport of topological spin solitons in a one-dimensional organic ferroelectric
    Imajo, S.
    Miyake, A.
    Kurihara, R.
    Tokunaga, M.
    Kindo, K.
    Horiuchi, S.
    Kagawa, F.
    PHYSICAL REVIEW B, 2021, 103 (20)
  • [9] Conservation laws, integrability, and transport in one-dimensional quantum systems
    Sirker, J.
    Pereira, R. G.
    Affleck, I.
    PHYSICAL REVIEW B, 2011, 83 (03)
  • [10] Transport properties of a molecular quantum dot coupled to one-dimensional correlated electrons
    Maier, S.
    Komnik, A.
    PHYSICAL REVIEW B, 2010, 82 (16):