Turnpike theorem and the Hamilton-Jacobi equation

被引:3
作者
Rapaport, A
Cartigny, P
机构
[1] Inst Natl Rech Agron, Lab Anal Syst & Biometrie, F-34060 Montpellier, France
[2] Univ Mediterranee, GREQAM, F-13002 Marseille, France
关键词
D O I
10.1016/S1631-073X(02)02613-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a problem of calculus of variations in infinite horizon, linear with respect to the derivative, we use the viscosity solutions theory to obtain a unique characterization of the value function by an Hamilton-Jacobi equation. This approach allows to extend in the scalar case a known result of turnpike property. (C) 2002 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:1091 / 1094
页数:4
相关论文
共 13 条
[1]  
Barles G., 1994, Solutions de viscosite des equations de Hamilton-Jacobi, V17
[2]  
Bell D.J., 1975, SINGULAR OPTIMAL CON
[3]   Optimality in infinite-horizon variational problems under sign conditions [J].
Blot, J ;
Cartigny, P .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2000, 106 (02) :411-419
[4]  
BLOT J, 1995, J ANAL APPL, V14, P731
[5]  
Carlson DA, 1991, INFINITE HORIZON OPT
[6]  
CARTIGNY P, 1994, CR ACAD SCI I-MATH, V318, P869
[7]  
CASS D, 1976, HAMILTONIAN APPROACH
[8]  
Clark C., 2010, MATH BIOECONOMICMA
[9]  
EKELAND I, 1986, LECT NOTES MATH, V1330
[10]   A FUNNEL TURNPIKE THEOREM FOR OPTIMAL-GROWTH PROBLEMS WITH DISCOUNTING [J].
FEINSTEIN, CD ;
OREN, SS .
JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 1985, 9 (01) :25-39