On the scaling behaviour of the alternating spin chain

被引:21
作者
Bazhanov, Vladimir V. [1 ]
Kotousov, Gleb A. [1 ,2 ]
Koval, Sergii M. [1 ]
Lukyanov, Sergei L. [2 ,3 ]
机构
[1] Australian Natl Univ, Res Sch Phys & Engn, Dept Theoret Phys, GPO Box 4, Canberra, ACT 2601, Australia
[2] Rutgers State Univ, Dept Phys & Astron, NHETC, Piscataway, NJ 08855 USA
[3] Kharkevich Inst Informat Transmiss Problems, Moscow 127994, Russia
关键词
Bethe Ansatz; Conformal Field Theory; Lattice Integrable Models; STAGGERED 6-VERTEX MODEL; SL(2; R) WZW MODEL; ANTIFERROMAGNETIC TRANSITION; POTTS-MODEL; Q-OPERATORS; STRINGS; ADS(3); PHASE;
D O I
10.1007/JHEP08(2019)087
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In this note we report the results of our study of a 1D integrable spin chain whose critical behaviour is governed by a CFT possessing a continuous spectrum of scaling dimensions. It is argued that the computation of the density of Bethe states of the continuous theory can be reduced to the calculation of the connection coefficients for a certain class of differential equations whose monodromy properties are similar to those of the conventional confluent hypergeometric equation. The finite size corrections to the scaling are also discussed.
引用
收藏
页数:31
相关论文
共 28 条
[1]   BEYOND THE LARGE N LIMIT - NONLINEAR W-INFINITY AS SYMMETRY OF THE SL(2,R)/U(1) COSET MODEL [J].
BAKAS, I ;
KIRITSIS, E .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1992, 7 :55-81
[2]   EQUIVALENCE OF POTTS MODEL OR WHITNEY POLYNOMIAL WITH AN ICE-TYPE MODEL [J].
BAXTER, RJ ;
KELLAND, SB ;
WU, FY .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1976, 9 (03) :397-406
[3]  
BAXTER RJ, 1971, STUD APPL MATH, V50, P51
[4]   Baxter's Q-operators for supersymmetric spin chains [J].
Bazhanov, Vladimir V. ;
Tsuboi, Zengo .
NUCLEAR PHYSICS B, 2008, 805 (03) :451-516
[5]   Integrable structure of Quantum Field Theory: classical flat connections versus quantum stationary states [J].
Bazhanov, Vladimir V. ;
Lukyanov, Sergei L. .
JOURNAL OF HIGH ENERGY PHYSICS, 2014, (09)
[6]   Spectral determinants for Schrodinger equation and Q-operators of conformal field theory [J].
Bazhanov, VV ;
Lukyanov, SL ;
Zamolodchikov, AB .
JOURNAL OF STATISTICAL PHYSICS, 2001, 102 (3-4) :567-576
[7]   Nonlinear integral equations for the SL(2, R)/U(1) black hole sigma model [J].
Candu, Constantin ;
Ikhlef, Yacine .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (41)
[8]   OPERATOR CONTENT OF TWO-DIMENSIONAL CONFORMALLY INVARIANT THEORIES [J].
CARDY, JL .
NUCLEAR PHYSICS B, 1986, 270 (02) :186-204
[9]   Anharmonic oscillators, the thermodynamic Bethe ansatz and nonlinear integral equations [J].
Dorey, P ;
Tateo, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (38) :L419-L425
[10]   Boundary RG flow associated with the AKNS soliton hierarchy [J].
Fateev, Vladimir A. ;
Lukyanov, Sergei L. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (41) :12889-12925