Stable Dioxin-Linked Metallophthalocyanine Covalent Organic Frameworks (COFs) as Photo-Coupled Electrocatalysts for CO2 Reduction

被引:249
作者
Lu, Meng [1 ]
Zhang, Mi [2 ]
Liu, Chun-Guang [3 ]
Liu, Jiang [1 ]
Shang, Lin-Jie [1 ]
Wang, Min [1 ]
Chang, Jia-Nan [1 ]
Li, Shun-Li [1 ]
Lan, Ya-Qian [1 ]
机构
[1] Nanjing Normal Univ, Sch Chem & Mat Sci, Jiangsu Collaborat Innovat Ctr Biomed Funct Mat, 1 Wenyuan Rd, Nanjing 210023, Peoples R China
[2] South China Normal Univ, Sch Chem, Guangzhou 510006, Peoples R China
[3] Beihua Univ, Fac Sci, Dept Chem, Jilin 132013, Jilin, Peoples R China
基金
中国博士后科学基金;
关键词
covalent organic frameworks (COFs); CO2; reduction; electrocatalysis; metallophthalocyanine; photo-coupled electrocatalysts; CARBON-DIOXIDE; H-2; PRODUCTION; CLIMATE-CHANGE; PHTHALOCYANINE; CATALYSTS;
D O I
10.1002/anie.202011722
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this work, we rationally designed a series of crystalline and stable dioxin-linked metallophthalocyanine covalent organic frameworks (COFs; MPc-TFPN COF, M=Ni, Co, Zn) under the guidance of reticular chemistry. As a novel single-site catalysts (SSCs), NiPc/CoPc-TFPN COF exhibited outstanding activity and selectivity for electrocatalytic CO2 reduction (ECR; Faradaic efficiency of CO (FECO)=99.8(+/- 1.24) %/ 96.1(+/- 1.25) % for NiPc/CoPc-TFPN COF). More importantly, when coupled with light, the FECO and current density (j(CO)) were further improved across the applied potential range (-0.6 to -1.2 V vs. RHE) compared to the dark environment for NiPc-TFPN COF (j(CO) increased from 14.1 to 17.5 A g(-1) at -0.9 V; FECO reached up to ca. 100 % at -0.8 to -0.9 V). Furthermore, an in-depth mechanism study was established by density functional theory (DFT) simulation and experimental characterization. For the first time, this work explored the application of COFs as photo-coupled electrocatalysts to improve ECR efficiency, which showed the potential of using light-sensitive COFs in the field of electrocatalysis.
引用
收藏
页码:4864 / 4871
页数:8
相关论文
共 58 条
[1]  
[Anonymous], 2020, ANGEW CHEM, V132, P4111
[2]  
[Anonymous], 2020, ANGEW CHEM, V132, P5086, DOI DOI 10.1002/ANGE.201904291
[3]  
[Anonymous], 2012, ANGEW CHEM, V124, P4451
[4]  
[Anonymous], 2019, ANGEW CHEM, V131, P14335
[5]   Dimension-Matched Zinc Phthalocyanine/BiVO4 Ultrathin Nanocomposites for CO2 Reduction as Efficient Wide-Visible-Light-Driven Photocatalysts via a Cascade Charge Transfer [J].
Bian, Ji ;
Feng, Jiannan ;
Zhang, Ziqing ;
Li, Zhijun ;
Zhang, Yuhang ;
Liu, Yadi ;
Ali, Sharafat ;
Qu, Yang ;
Bai, Linlu ;
Xie, Jijia ;
Tang, Dongyan ;
Li, Xin ;
Bai, Fuquan ;
Tang, Junwang ;
Jing, Liqiang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (32) :10873-10878
[6]   Covalent Organic Frameworks: Chemical Approaches to Designer Structures and Built-In Functions [J].
Chen, Xinyi ;
Geng, Keyu ;
Liu, Ruoyang ;
Tan, Ke Tian ;
Gong, Yifan ;
Li, Zhongping ;
Tao, Shanshan ;
Jiang, Qiuhong ;
Jiang, Donglin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (13) :5050-5091
[7]   Future CO2 Emissions and Climate Change from Existing Energy Infrastructure [J].
Davis, Steven J. ;
Caldeira, Ken ;
Matthews, H. Damon .
SCIENCE, 2010, 329 (5997) :1330-1333
[8]   Phthalocyanines: old dyes, new materials. Putting color in nanotechnology [J].
de la Torre, Gema ;
Claessens, Christian G. ;
Torres, Tomas .
CHEMICAL COMMUNICATIONS, 2007, (20) :2000-2015
[9]   What would it take for renewably powered electrosynthesis to displace petrochemical processes? [J].
De Luna, Phil ;
Hahn, Christopher ;
Higgins, Drew ;
Jaffer, Shaffiq A. ;
Jaramillo, Thomas F. ;
Sargent, Edward H. .
SCIENCE, 2019, 364 (6438) :350-+
[10]   Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction [J].
De Luna, Phil ;
Quintero-Bermudez, Rafael ;
Cao-Thang Dinh ;
Ross, Michael B. ;
Bushuyev, Oleksandr S. ;
Todorovic, Petar ;
Regier, Tom ;
Kelley, Shana O. ;
Yang, Peidong ;
Sargent, Edward H. .
NATURE CATALYSIS, 2018, 1 (02) :103-110