Counterexample to a conjecture about braces

被引:73
作者
Bachiller, David [1 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, Bellaterra 08193, Barcelona, Spain
关键词
Braces; IYB group; Bijective; 1-cocycle; Radical rings; Hopf-Galois extensions; Nilpotent group; Lie algebras; LSA structures; YANG-BAXTER EQUATION; FIELD-EXTENSIONS;
D O I
10.1016/j.jalgebra.2016.01.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We find an example of a finite solvable group (in fact, a finite p-group) in which is not possible to define a left brace structure or, equivalently, which is not an IYB group. This answers a question posed by Cedo, Jespers and del Rio related to the Yang-Baxter equation. Our argument is an improvement of an argument of Rump, using results about Hopf-Galois extensions and LSA structures. We explain explicitly the relation between these two areas of mathematics and brace theory, hoping that it will be useful in the future. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:160 / 176
页数:17
相关论文
共 20 条
[1]  
[Anonymous], 1998, p-automorphisms of finite p-groups, volume 246 of London Mathematical Society Lecture Note Series
[2]  
[Anonymous], 1990, CAMBRIDGE STUD ADV M
[3]   SIMPLY TRANSITIVE GROUPS OF AFFINE MOTIONS [J].
AUSLANDER, L .
AMERICAN JOURNAL OF MATHEMATICS, 1977, 99 (04) :809-826
[4]  
Bachiller D., 2015, ARXIV150302814MATHGR
[5]  
Ben David N., 2014, ARXIV14035740V2MATHG
[6]  
BENOIST Y, 1995, J DIFFER GEOM, V41, P21
[7]   Affine structures on nilmanifolds [J].
Burde, D .
INTERNATIONAL JOURNAL OF MATHEMATICS, 1996, 7 (05) :599-616
[8]   Uniqueness of Hopf Galois structure for separable field extensions [J].
Byott, NP .
COMMUNICATIONS IN ALGEBRA, 1996, 24 (10) :3217-3228
[9]   REGULAR SUBGROUPS OF THE AFFINE GROUP AND RADICAL CIRCLE ALGEBRAS [J].
Catino, Francesco ;
Rizzo, Roberto .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2009, 79 (01) :103-107
[10]   NILPOTENT GROUPS OF CLASS THREE AND BRACES [J].
Cedo, Ferran ;
Jespers, Eric ;
Okninski, Jan .
PUBLICACIONS MATEMATIQUES, 2016, 60 (01) :55-79