NIELSEN REALIZATION FOR INFINITE-TYPE SURFACES

被引:3
作者
Afton, Santana [1 ]
Calegari, Danny [2 ]
Chen, Lvzhou [3 ]
Lyman, Rylee Alanza [4 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[3] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[4] Rutgers Univ Newark, Dept Math, Newark, NJ 07102 USA
关键词
D O I
10.1090/proc/15316
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a finite subgroup G of the mapping class group of a surface S, the Nielsen realization problem asks whether G can be realized as a finite group of homeomorphisms of S. In 1983, Kerckhoff showed that for S a finite-type surface, any finite subgroup G may be realized as a group of isometrics of some hyperbolic metric on S. We extend Kerckhoff's result to orientable, infinite-type surfaces. As applications, we classify torsion elements in the mapping class group of the plane minus a Cantor set, and also show that topological groups containing sequences of torsion elements limiting to the identity do not embed continuously into the mapping class group of S. Finally, we show that compact subgroups of the mapping class group of S are finite, and locally compact subgroups are discrete.
引用
收藏
页码:1791 / 1799
页数:9
相关论文
共 14 条
[1]  
Aougab Tarik, 2020, ARXIV200701982MATHGT
[2]  
Aramayona Javier, 2020, ARXIV200307950MATHGT
[3]   THE GROMOV BOUNDARY OF THE RAY GRAPH [J].
Bavard, Juliette ;
Walker, Alden .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (11) :7647-7678
[4]  
Bavard Juliette, 2018, 2 SIMULTANEOUS ACTIO
[5]  
Calegari Danny, 2020, ERGODIC THEORY DYNAM
[6]   Metric and topological aspects of the symmetric group of countable degree [J].
Cameron, PJ .
EUROPEAN JOURNAL OF COMBINATORICS, 1996, 17 (2-3) :135-142
[7]  
Farb B., 2012, PRIMER MAPPING CLASS
[8]  
Hernández JH, 2019, MICH MATH J, V68, P743
[9]   THE NIELSEN REALIZATION PROBLEM [J].
KERCKHOFF, SP .
ANNALS OF MATHEMATICS, 1983, 117 (02) :235-265
[10]  
Kerekjarto B., 1923, Die Grundlehren der mathematischen Wissenschaften, V8