BREAKING THE CURSE OF DIMENSIONALITY, OR HOW TO USE SVD IN MANY DIMENSIONS

被引:315
作者
Oseledets, I. V. [1 ]
Tyrtyshnikov, E. E. [1 ]
机构
[1] Russian Acad Sci, Inst Numer Math, Moscow 119991, Russia
关键词
Tree-Tucker; canonical decomposition; Tucker decomposition; curse of dimensionality; APPROXIMATION; DECOMPOSITION; TENSORS;
D O I
10.1137/090748330
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For d-dimensional tensors with possibly large d > 3, an hierarchical data structure, called the Tree-Tucker format, is presented as an alternative to the canonical decomposition. It has asymptotically the same (and often even smaller) number of representation parameters and viable stability properties. The approach involves a recursive construction described by a tree with the leafs corresponding to the Tucker decompositions of three-dimensional tensors, and is based on a sequence of SVDs for the recursively obtained unfolding matrices and on the auxiliary dimensions added to the initial "spatial" dimensions. It is shown how this format can be applied to the problem of multidimensional convolution. Convincing numerical examples are given.
引用
收藏
页码:3744 / 3759
页数:16
相关论文
共 19 条
[1]  
[Anonymous], 1959, THEORY MATRICES
[2]  
[Anonymous], 2000, THEORY MATRICES
[3]   Efficient MATLAB computations with sparse and factored tensors [J].
Bader, Brett W. ;
Kolda, Tamara G. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 30 (01) :205-231
[4]   Algorithms for numerical analysis in high dimensions [J].
Beylkin, G ;
Mohlenkamp, MJ .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 26 (06) :2133-2159
[5]   Numerical operator calculus in higher dimensions [J].
Beylkin, G ;
Mohlenkamp, MJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (16) :10246-10251
[6]   ANALYSIS OF INDIVIDUAL DIFFERENCES IN MULTIDIMENSIONAL SCALING VIA AN N-WAY GENERALIZATION OF ECKART-YOUNG DECOMPOSITION [J].
CARROLL, JD ;
CHANG, JJ .
PSYCHOMETRIKA, 1970, 35 (03) :283-&
[7]   A multilinear singular value decomposition [J].
De Lathauwer, L ;
De Moor, B ;
Vandewalle, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) :1253-1278
[8]   On the best rank-1 and rank-(R1,R2,...,RN) approximation of higher-order tensors [J].
De Lathauwer, L ;
De Moor, B ;
Vandewalle, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) :1324-1342
[9]   TENSOR RANK AND THE ILL-POSEDNESS OF THE BEST LOW-RANK APPROXIMATION PROBLEM [J].
de Silva, Vin ;
Lim, Lek-Heng .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (03) :1084-1127
[10]  
Golub G. H., 2012, Matrix computations, V4th