Microengineered Hollow Graphene Tube Systems Generate Conductive Hydrogels with Extremely Low Filler Concentration

被引:38
作者
Arndt, Christine [1 ,2 ]
Hauck, Margarethe [3 ]
Wacker, Irene [4 ]
Zeller-Plumhoff, Berit [5 ]
Rasch, Florian [3 ]
Taale, Mohammadreza [2 ]
Nia, Ali Shaygan [6 ]
Feng, Xinliang [6 ]
Adelung, Rainer [3 ]
Schroeder, Rasmus R. [4 ]
Schuett, Fabian [1 ]
Selhuber-Unkel, Christine [2 ,7 ]
机构
[1] Univ Kiel, Inst Mat Sci, Biocompatible Nanomat, D-24143 Kiel, Germany
[2] Heidelberg Univ, Inst Mol Syst Engn IMSE, D-69120 Heidelberg, Germany
[3] Univ Kiel, Inst Mat Sci, Funct Nanomat, D-24143 Kiel, Germany
[4] Heidelberg Univ, Ctr Adv Mat CAM, Cryo Electron Microscopy, D-69120 Heidelberg, Germany
[5] Helmholtz Zentrum Geesthacht, Inst Metall Biomat, D-21502 Geesthacht, Germany
[6] Tech Univ Dresden, Ctr Adv Elect Dresden Cfaed, Dept Chem & Food Chem, D-01062 Dresden, Germany
[7] Max Planck Sch Matter Life, Jahnstrae 29, D-69120 Heidelberg, Germany
基金
欧盟地平线“2020”;
关键词
Hydrogel; graphene; electrical conductivity; bioelectronics; SCAFFOLDS; NETWORKS;
D O I
10.1021/acs.nanolett.0c04375
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The fabrication of electrically conductive hydrogels is challenging as the introduction of an electrically conductive filler often changes mechanical hydrogel matrix properties. Here, we present an approach for the preparation of hydrogel composites with outstanding electrical conductivity at extremely low filler loadings (0.34 S m(-1), 0.16 vol %). Exfoliated graphene and polyacrylamide are microengineered to 3D composites such that conductive graphene pathways pervade the hydrogel matrix similar to an artificial nervous system. This makes it possible to combine both the exceptional conductivity of exfoliated graphene and the adaptable mechanical properties of polyacrylamide. The demonstrated approach is highly versatile regarding porosity, filler material, as well as hydrogel system. The important difference to other approaches is that we keep the original properties of the matrix, while ensuring conductivity through graphene-coated microchannels. This novel approach of generating conductive hydrogels is very promising, with particular applications in the fields of bioelectronics and biohybrid robotics.
引用
收藏
页码:3690 / 3697
页数:8
相关论文
共 38 条
[1]  
Aoki H., 2014, Physics of Graphene
[2]   Living Materials Herald a New Era in Soft Robotics [J].
Appiah, Clement ;
Arndt, Christine ;
Siemsen, Katherina ;
Heitmann, Anne ;
Staubitz, Anne ;
Selhuber-Unkel, Christine .
ADVANCED MATERIALS, 2019, 31 (36)
[3]   Electrically conductive polyacrylamide/carbon nanotube hydrogel: reinforcing effect from cellulose nanofibers [J].
Chen, Chuchu ;
Wang, Yiren ;
Meng, Taotao ;
Wu, Qijing ;
Fang, Lu ;
Zhao, Di ;
Zhang, Yiyi ;
Li, Dagang .
CELLULOSE, 2019, 26 (16) :8843-8851
[4]   Nanocellulose-Mediated Electroconductive Self-Healing Hydrogels with High Strength, Plasticity, Viscoelasticity, Stretchability, and Biocompatibility toward Multifunctional Applications [J].
Ding, Qinqin ;
Xu, Xinwu ;
Yue, Yiying ;
Mei, Changtong ;
Huang, Chaobo ;
Jiang, Shaohua ;
Wu, Qinglin ;
Han, Jingquan .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (33) :27987-28002
[5]   3D printing of electrically conductive hydrogels for tissue engineering and biosensors - A review [J].
Distler, Thomas ;
Boccaccini, Aldo R. .
ACTA BIOMATERIALIA, 2020, 101 :1-13
[6]  
Dvir T, 2011, NAT NANOTECHNOL, V6, P720, DOI [10.1038/NNANO.2011.160, 10.1038/nnano.2011.160]
[7]   Functional Conductive Hydrogels for Bioelectronics [J].
Fu, Fanfan ;
Wang, Jilei ;
Zeng, Hongbo ;
Yu, Jing .
ACS MATERIALS LETTERS, 2020, 2 (10) :1287-1301
[8]   Cardiomyocyte behavior on biodegradable polyurethane/gold nanocomposite scaffolds under electrical stimulation [J].
Ganji, Yasaman ;
Li, Qian ;
Quabius, Elgar Susanne ;
Boettner, Martina ;
Selhuber-Unkel, Christine ;
Kasra, Mehran .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2016, 59 :10-18
[9]   Nobel Lecture: Random walk to graphene [J].
Geim, Andre K. .
REVIEWS OF MODERN PHYSICS, 2011, 83 (03) :851-862
[10]   3D Hydrogels Containing Interconnected Microchannels of Subcellular Size for Capturing Human Pathogenic Acanthamoeba Castellanii [J].
Gutekunst, Soeren B. ;
Siemsen, Katharina ;
Huth, Steven ;
Moehring, Anneke ;
Hesseler, Britta ;
Timmermann, Michael ;
Paulowicz, Ingo ;
Mishra, Yogendra Kumar ;
Siebert, Leonard ;
Adelung, Rainer ;
Selhuber-Unkel, Christine .
ACS BIOMATERIALS SCIENCE & ENGINEERING, 2019, 5 (04) :1784-1792