Periodic orbits and chain-transitive sets of C1-diffeomorphisms

被引:68
作者
Crovisier, Sylvain [1 ]
机构
[1] Univ Paris 13, Inst Galilee, UMR 7539, CNRS,Lab Anal Geometrie & Applicat, F-93430 Villetaneuse, France
来源
PUBLICATIONS MATHEMATIQUES DE L'IHES, NO 104 | 2006年 / 104卷 / 104期
关键词
D O I
10.1007/s10240-006-0002-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the chain-transitive sets of C-1-generic dilleomorphisms are approximated in the Hausdorff topology by periodic orbits. This implies that the homoclinic classes are dense among the chain-recurrence classes. This result is a consequence of a global connecting lemma, which allows to build by a C-1-perturbation an orbit connecting several prescribed points. One deduces a weak shadowing property satisfied by C-1-generic diffeomorphisms: any pseudo-orbit is approximated in the Hausdorff topology by a finite segment of a genuine orbit. As a consequence, we obtain a criterion for proving the tolerance stability conjecture in Diff(1) (M).
引用
收藏
页码:87 / 141
页数:55
相关论文
共 54 条
  • [1] Global dominated splittings and the C1 Newhouse phenomenon
    Abdenur, F
    Bonatti, C
    Crovisier, S
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (08) : 2229 - 2237
  • [2] Generic diffeomorphisms on compact surfaces
    Abdenur, F
    Bonatti, C
    Crovisier, S
    Díaz, LJ
    [J]. FUNDAMENTA MATHEMATICAE, 2005, 187 (02) : 127 - 159
  • [3] ABDENUR F, IN PRESS DISCRETE CO
  • [4] Abraham R., 1970, P S PURE MATH, V14, P5
  • [5] [Anonymous], 1964, CONTRIB DIFFER EQU
  • [6] [Anonymous], 1973, INVENT MATH
  • [7] Generic symplectic dynamics
    Arnaud, MC
    Bonatti, C
    Crovisier, S
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2005, 25 : 1401 - 1436
  • [8] Approximation of ω-limit sets of diffeomorphisms by periodic orbits
    Arnaud, MC
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2003, 36 (02): : 173 - 190
  • [9] Recurrence and genericty
    Bonatti, C
    Crovisier, S
    [J]. INVENTIONES MATHEMATICAE, 2004, 158 (01) : 33 - 104
  • [10] Persistent nonhyperbolic transitive diffeomorphisms
    Bonatti, C
    Diaz, LJ
    [J]. ANNALS OF MATHEMATICS, 1996, 143 (02) : 357 - 396