Periodic orbits and chain-transitive sets of C1-diffeomorphisms

被引:68
作者
Crovisier, Sylvain [1 ]
机构
[1] Univ Paris 13, Inst Galilee, UMR 7539, CNRS,Lab Anal Geometrie & Applicat, F-93430 Villetaneuse, France
来源
PUBLICATIONS MATHEMATIQUES DE L'IHES, NO 104 | 2006年 / 104卷 / 104期
关键词
D O I
10.1007/s10240-006-0002-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the chain-transitive sets of C-1-generic dilleomorphisms are approximated in the Hausdorff topology by periodic orbits. This implies that the homoclinic classes are dense among the chain-recurrence classes. This result is a consequence of a global connecting lemma, which allows to build by a C-1-perturbation an orbit connecting several prescribed points. One deduces a weak shadowing property satisfied by C-1-generic diffeomorphisms: any pseudo-orbit is approximated in the Hausdorff topology by a finite segment of a genuine orbit. As a consequence, we obtain a criterion for proving the tolerance stability conjecture in Diff(1) (M).
引用
收藏
页码:87 / 141
页数:55
相关论文
共 54 条
[1]   Global dominated splittings and the C1 Newhouse phenomenon [J].
Abdenur, F ;
Bonatti, C ;
Crovisier, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (08) :2229-2237
[2]   Generic diffeomorphisms on compact surfaces [J].
Abdenur, F ;
Bonatti, C ;
Crovisier, S ;
Díaz, LJ .
FUNDAMENTA MATHEMATICAE, 2005, 187 (02) :127-159
[3]  
ABDENUR F, IN PRESS DISCRETE CO
[4]  
Abraham R., 1970, P S PURE MATH, V14, P5
[5]  
[Anonymous], 1964, CONTRIB DIFFER EQU
[6]  
[Anonymous], 1973, INVENT MATH
[7]   Generic symplectic dynamics [J].
Arnaud, MC ;
Bonatti, C ;
Crovisier, S .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2005, 25 :1401-1436
[8]   Approximation of ω-limit sets of diffeomorphisms by periodic orbits [J].
Arnaud, MC .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2003, 36 (02) :173-190
[9]   Recurrence and genericty [J].
Bonatti, C ;
Crovisier, S .
INVENTIONES MATHEMATICAE, 2004, 158 (01) :33-104
[10]   Persistent nonhyperbolic transitive diffeomorphisms [J].
Bonatti, C ;
Diaz, LJ .
ANNALS OF MATHEMATICS, 1996, 143 (02) :357-396