A CRISPR-Cas12a-based specific enhancer for more sensitive detection of SARS-CoV-2 infection

被引:32
作者
Huang, Weiren [1 ]
Yu, Lei [1 ]
Wen, Donghua [2 ]
Wei, Dong [3 ]
Sun, Yangyang [1 ]
Zhao, Huailong [4 ]
Ye, Yu [5 ]
Chen, Wei [1 ]
Zhu, Yongqiang [6 ]
Wang, Lijun [6 ]
Wang, Li [7 ]
Wu, Wenjuan [2 ]
Zhao, Qianqian [8 ]
Xu, Yong [1 ]
Gu, Dayong [1 ]
Nie, Guohui [1 ]
Zhu, Dongyi [2 ]
Guo, Zhongliang [2 ]
Ma, Xiaoling [9 ]
Niu, Liman [1 ]
Huang, Yikun [1 ]
Liu, Yuchen [1 ]
Peng, Bo [10 ]
Zhang, Renli [10 ]
Zhang, Xiuming [11 ]
Li, Dechang [12 ]
Liu, Yang [13 ]
Yang, Guoliang [4 ]
Liu, Lanzheng [4 ]
Zhou, Yunying [8 ]
Wang, Yunshan [8 ]
Hou, Tieying [14 ]
Gao, Qiuping [15 ]
Li, Wujiao [1 ]
Chen, Shuo [5 ]
Hu, Xuejiao [14 ]
Han, Mei [16 ]
Zheng, Huajun [6 ]
Weng, Jianping [9 ]
Cai, Zhiming [1 ]
Zhang, Xinxin [3 ]
Song, Fei [1 ]
Zhao, Guoping [15 ,17 ,18 ]
Wang, Jin [19 ]
机构
[1] Shenzhen Univ, Shenzhen Univ Sch Med, Shenzhen Peoples Hosp 2, Int Canc Ctr,Affiliated Hosp 1,Dept Urol, Shenzhen 518039, Peoples R China
[2] Tongji Univ, Shanghai East Hosp, Dept Lab Med, Sch Med, Shanghai 200123, Peoples R China
[3] Shanghai Jiao Tong Univ, Ruijin Hosp, Res Lab Clin Virol, Sch Med, Shanghai 200025, Peoples R China
[4] Jinan Ctr Dis Control & Prevent, Jinan 250021, Shandong, Peoples R China
[5] Chinese Acad Sci, Shenzhen Inst Synthet Biol, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
[6] Chinese Natl Human Genome Ctr Shanghai, Shanghai Most Key Lab Hlth & Dis Genom, Shanghai 201203, Peoples R China
[7] Shandong Univ, Jinan Infect Dis Hosp, Jinan 250021, Shandong, Peoples R China
[8] Shandong Univ, Med Res & Lab Diagnost Ctr, Jinan Cent Hosp, Jinan 250013, Shandong, Peoples R China
[9] Univ Sci & Technol China, Affiliated Hosp USTC 1, Div Life Sci & Med, Hefei 230001, Anhui, Peoples R China
[10] Shenzhen Ctr Dis Control & Prevent, Shenzhen 518055, Peoples R China
[11] Huazhong Univ Sci & Technol, Shenzhen Peoples Hosp 6, Nanshan Hosp, Union Shenzhen Hosp, Shenzhen 518052, Peoples R China
[12] Yuebei Second Peoples Hosp, Shaoguan 512000, Guangdong, Peoples R China
[13] Shanghai Inst Qual Inspect & Tech Res, Natl Qual Supervis & Inspect Ctr Food Prod Shangh, Shanghai 200233, Peoples R China
[14] Prov Peoples Hosp, Guangdong Acad Med Sci Guangzhou, Lab Med, Guangzhou 510080, Guangdong, Peoples R China
[15] Tolo Biotechnol Co Ltd, Shanghai 200233, Peoples R China
[16] Publ Hlth Med Ctr Chongqing Municipal, Chongqing 400036, Peoples R China
[17] Chinese Acad Sci, CAS Key Lab Synthet Biol, Inst Plant Physiol & Ecol, Shanghai Inst Biol Sci, Shanghai 200032, Peoples R China
[18] Chinese Acad Sci, CAS MPG Partner Inst Computat Biol, Key Lab Computat Biol, Biomed Big Data Ctr,Shanghai Inst Nutr & Hlth, Shanghai 200031, Peoples R China
[19] Shanghai Normal Univ, Coll Life Sci, Shanghai 200234, Peoples R China
来源
EBIOMEDICINE | 2020年 / 61卷
基金
中国国家自然科学基金;
关键词
COVID-19; SARS-CoV-2; rRT-PCR; CRISPR diagnosis; Cas12a; SENA; NUCLEIC-ACID DETECTION;
D O I
10.1016/j.ebiom.2020.103036
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Real-time reverse transcription-PCR (rRT-PCR) has been the most effective and widely implemented diagnostic technology since the beginning of the COVID-19 pandemic. However, fuzzy rRT-PCR readouts with high Ct values are frequently encountered, resulting in uncertainty in diagnosis. Methods: A Specific Enhancer for PCR-amplified Nucleic Acid (SENA) was developed based on the Cas12a transcleavage activity, which is specifically triggered by the rRT-PCR amplicons of the SARS-CoV-2 Orf1ab (O) and N fragments. SENA was first characterized to determine its sensitivity and specificity, using a systematic titration experiment with pure SARS-CoV-2 RNA standards, and was then verified in several hospitals, employing a couple of commercial rRT-PCR kits and testing various clinical specimens under different scenarios. Findings: The ratio (10 min/5 min) of fluorescence change (FC) with mixed SENA reaction (mix-FCratio) was defined for quantitative analysis of target O and N genes, and the Limit of Detection (LoD) of mix-FCratio with 95% confidence interval was 1.2 <= 1.6 <= 2.1. Totally, 295 clinical specimens were analyzed, among which 21 uncertain rRT-PCR cases as well as 4 false negative and 2 false positive samples were characterized by SENA and further verified by next-generation sequencing (NGS). The cut-off values for mix-FCratio were determined as 1.145 for positive and 1.068 for negative. Interpretation: SENA increases both the sensitivity and the specificity of rRT-PCR, solving the uncertainty problem in COVID-19 diagnosis and thus providing a simple and low-cost companion diagnosis for combating the pandemic. (C) 2020 The Author(s). Published by Elsevier B.V.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] CRISPR techniques and potential for the detection and discrimination of SARS-CoV-2 variants of concern
    Xiao, Huyan
    Hu, Jianyu
    Huang, Camille
    Feng, Wei
    Liu, Yanming
    Kumblathan, Teresa
    Tao, Jeffrey
    Xu, Jingyang
    Le, X. Chris
    Zhang, Hongquan
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2023, 161
  • [42] Application of the amplification-free SERS-based CRISPR/Cas12a platform in the identification of SARS-CoV-2 from clinical samples
    Liang, Jiajie
    Teng, Peijun
    Xiao, Wei
    He, Guanbo
    Song, Qifang
    Zhang, Ying
    Peng, Bin
    Li, Gan
    Hu, Liangshan
    Cao, Donglin
    Tang, Yong
    JOURNAL OF NANOBIOTECHNOLOGY, 2021, 19 (01)
  • [43] Efficient CRISPR-Cas13d-Based Antiviral Strategy to Combat SARS-CoV-2
    Hussein, Mouraya
    dos Ramos, Zaria Andrade
    Vink, Monique A.
    Kroon, Pascal
    Yu, Zhenghao
    Enjuanes, Luis
    Zuniga, Sonia
    Berkhout, Ben
    Herrera-Carrillo, Elena
    VIRUSES-BASEL, 2023, 15 (03):
  • [44] SARS-CoV-2 antigen rapid tests For reliable detection of SARS-CoV-2 infection not suitable
    Reuter, Tom
    Lange, Constanze
    Zeyher, Sharay
    Woelk, Benno
    Kramer, Jan
    PRAVENTION UND GESUNDHEITSFORDERUNG, 2023, 18 (03): : 370 - 376
  • [45] SARS-CoV-2 Direct Detection Without RNA Isolation With Loop-Mediated Isothermal Amplification (LAMP) and CRISPR-Cas12
    Garcia-Venzor, Alfredo
    Rueda-Zarazua, Bertha
    Marquez-Garcia, Eduardo
    Maldonado, Vilma
    Moncada-Morales, Angelica
    Olivera, Hiram
    Lopez, Irma
    Zuniga, Joaquin
    Melendez-Zajgla, Jorge
    FRONTIERS IN MEDICINE, 2021, 8
  • [46] Streamlined inactivation, amplification, and Cas13-based detection of SARS-CoV-2
    Arizti-Sanz, Jon
    Freije, Catherine A.
    Stanton, Alexandra C.
    Petros, Brittany A.
    Boehm, Chloe K.
    Siddiqui, Sameed
    Shaw, Bennett M.
    Adams, Gordon
    Kosoko-Thoroddsen, Tinna-Solveig F.
    Kemball, Molly E.
    Uwanibe, Jessica N.
    Ajogbasile, Fehintola V.
    Eromon, Philomena E.
    Gross, Robin
    Wronka, Loni
    Caviness, Katie
    Hensley, Lisa E.
    Bergman, Nicholas H.
    MacInnis, Bronwyn L.
    Happi, Christian T.
    Lemieux, Jacob E.
    Sabeti, Pardis C.
    Myhrvold, Cameron
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [47] In Silico Evaluation of CRISPR-Based Assays for Effective Detection of SARS-CoV-2
    Kaewsapsak, Pornchai
    Chantaravisoot, Naphat
    Nimsamer, Pattaraporn
    Mayuramart, Oraphan
    Mankhong, Suwanan
    Payungporn, Sunchai
    PATHOGENS, 2022, 11 (09):
  • [48] Sensitive Detection of SARS-CoV-2 Using a SERS-Based Aptasensor
    Chen, Hao
    Park, Sung-Gyu
    Choi, Namhyun
    Kwon, Hyung-Jun
    Kang, Taejoon
    Lee, Mi-Kyung
    Choo, Jaebum
    ACS SENSORS, 2021, 6 (06) : 2378 - 2385
  • [49] Dual-CRISPR/Cas12a-Assisted RT-RAA for Ultrasensitive SARS-CoV-2 Detection on Automated Centrifugal Microfluidics
    Chen, Yong
    Zong, Nan
    Ye, Feidi
    Mei, Yixin
    Qu, Jiuxin
    Jiang, Xingyu
    ANALYTICAL CHEMISTRY, 2022, 94 (27) : 9603 - 9609
  • [50] A CRISPR/Cas13a-based and hybridization chain reaction coupled evanescent wave biosensor for SARS-CoV-2 gene detection
    Li, Yang
    Zhao, Yikan
    Yi, Zhihao
    Han, Shitong
    ANALYST, 2025, 150 (07) : 1367 - 1376