Remarkable Conductivity of a Self-Healing Single-Ion Conducting Polymer Electrolyte, Poly(ethylene-co-acrylic lithium (fluoro sulfonyl)imide), for All-Solid-State Li-Ion Batteries

被引:71
作者
Ahmed, Faiz [1 ]
Choi, Inhwan [1 ]
Rahman, Md Mahbubur [1 ]
Jang, Hohyoun [1 ]
Ryu, Taewook [1 ]
Yoon, Sujin [1 ]
Jin, Lei [1 ]
Jin, Yongcheng [2 ]
Kim, Whangi [1 ]
机构
[1] Konkuk Univ, Dept Energy & Mat, Chungju 27478, South Korea
[2] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Xinyuan Rd, Qingdao Shi 266000, Shandong Sheng, Peoples R China
基金
新加坡国家研究基金会;
关键词
polymer electrolyte; self-healing; single-ion conducting; Li-ion conductivity; Li batteries; COPOLYMER ELECTROLYTES; ELECTROCHEMICAL PERFORMANCE; OXIDE); STABILITY; COMPLEXES; TRANSPORT; MEMBRANE; ANODES; SALTS;
D O I
10.1021/acsami.9b10474
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Single-ion conducting polymer electrolyte (SICPE) is a safer alternative to the conventional high-performance liquid electrolyte for Li-ion batteries. The performance of SICPEs-based Li-ion batteries is limited due to the low Li+ conductivities of SICPEs at room temperature. Herein, we demonstrated the synthesis of a novel SICPE, poly(ethylene-coacrylic lithium (fluoro sulfonyl)imide) (PEALiFSI), with acrylic (fluoro sulfonyl)imide anion (AFSI). The solvent- and plasticizer-free PEALiFSI electrolyte, which was assembled at 90 degrees C under pressure, exhibited self-healing properties with remarkably high Li+ conductivity (5.84 X 10(-4) S cm(-1) at 25 degrees C). This is mainly due to the self-healing behavior of this electrolyte, which induced to increase the proportion of the amorphous phase. Additionally, the weak interaction of Li+ with the resonance-stabilized AFSI anion is also responsible for high Li(+)conductivity. This self-healed SICPE showed high Li + transference number (ca. 0.91), flame and heat retardancy, and good thermal stability, which concurrently delivered ca. 88.25% (150 mAh g(-1) at 0.1C) of the theoretical capacitance of LiFePO4 cathode material at 25 degrees C with the full-cell configuration of LiFePO4/PEALiFSI/graphite. Furthermore, the self-healed PEALiFSI-based all-solid-state Li battery showed high electrochemical cycling stability with the capacity retention of 95% after 500 charge-discharge cycles.
引用
收藏
页码:34930 / 34938
页数:9
相关论文
共 65 条
[1]   Synthesis and electrochemical performance of an imidazolium based Li salt as electrolyte with Li fluorinated sulfonylimides as additives for Li-Ion batteries [J].
Ahmed, Faiz ;
Rahman, Md Mahbubur ;
Sutradhar, Sabuj Chandra ;
Lopa, Nasrin Siraj ;
Ryu, Taewook ;
Yoon, Sujin ;
Choi, Inhwan ;
Lee, Yonghoon ;
Kim, Whangi .
ELECTROCHIMICA ACTA, 2019, 302 :161-168
[2]   Novel divalent organo-lithium salts with high electrochemical and thermal stability for aqueous rechargeable Li-Ion batteries [J].
Ahmed, Faiz ;
Rahman, Md Mahbubur ;
Sutradhar, Sabuj Chandra ;
Lopa, Nasrin Siraj ;
Ryu, Taewook ;
Yoon, Soojin ;
Choi, Inhwan ;
Lee, Seungchan ;
Kim, Whangi .
ELECTROCHIMICA ACTA, 2019, 298 :709-716
[3]   Single ion conductors - polyphosphazenes with sulfonimide functional groups [J].
Allcock, HR ;
Welna, DT ;
Maher, AE .
SOLID STATE IONICS, 2006, 177 (7-8) :741-747
[4]   IONIC CONDUCTIVITIES FOR POLY(ETHYLENE OXIDE) COMPLEXES WITH LITHIUM-SALTS OF MONOBASIC AND DIBASIC ACIDS AND BLENDS OF POLY(ETHYLENE OXIDE) WITH LITHIUM-SALTS OF ANIONIC POLYMERS [J].
BANNISTER, DJ ;
DAVIES, GR ;
WARD, IM ;
MCINTYRE, JE .
POLYMER, 1984, 25 (09) :1291-1296
[5]   CATIONIC CONDUCTIVITY IN POLY(OXYETHYLENE OXIDE) NETWORKS [J].
BENRABAH, D ;
SYLLA, S ;
SANCHEZ, JY ;
ARMAND, M .
JOURNAL OF POWER SOURCES, 1995, 54 (02) :456-460
[6]  
Bouchet R, 2013, NAT MATER, V12, P452, DOI [10.1038/NMAT3602, 10.1038/nmat3602]
[7]   Solid polymer single-ion conductors: Synthesis and properties [J].
Bronstein, LM ;
Karlinsey, RL ;
Stein, B ;
Yi, Z ;
Carini, J ;
Zwanziger, JW .
CHEMISTRY OF MATERIALS, 2006, 18 (03) :708-715
[8]   A high-voltage poly(methylethyl α-cyanoacrylate) composite polymer electrolyte for 5 V lithium batteries [J].
Chai, Jingchao ;
Zhang, Jianjun ;
Hu, Pu ;
Ma, Jun ;
Du, Huiping ;
Yue, Liping ;
Zhao, Jianghui ;
Wen, Huijie ;
Liu, Zhihong ;
Cui, Guanglei ;
Chen, Liquan .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (14) :5191-5197
[9]   The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons [J].
Chen, Renjie ;
Qu, Wenjie ;
Guo, Xing ;
Li, Li ;
Wu, Feng .
MATERIALS HORIZONS, 2016, 3 (06) :487-516
[10]   Hyperbranched PEO-Based Hyperstar Solid Polymer Electrolytes with Simultaneous Improvement of Ion Transport and Mechanical Strength [J].
Chen, Yang ;
Shi, Yi ;
Liang, Yanliang ;
Dong, Hui ;
Hao, Fang ;
Wang, Audrey ;
Zhu, Yuxiang ;
Cui, Xiaoli ;
Yao, Yan .
ACS APPLIED ENERGY MATERIALS, 2019, 2 (03) :1608-1615