Partitioning Boolean lattices into antichains

被引:0
作者
Elzobi, M [1 ]
Lonc, Z [1 ]
机构
[1] Warsaw Univ Technol, Dept Math & Informat Sci, PL-00661 Warsaw, Poland
关键词
Boolean lattice; antichain partitions; chain partition;
D O I
10.1016/S0012-365X(02)00448-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f(n) be the smallest integer t such that a poset obtained from a Boolean lattice with n atoms by deleting both the largest and the smallest elements can be partitioned into t antichains of the same size except for possibly one antichain of a smaller size, In this paper, it is shown that f (n) less than or equal to b n(2)/log n. This is an improvement of the best previously known upper bound for f(n). (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:45 / 55
页数:11
相关论文
共 10 条
[1]  
DEWERRA D, 1971, RAIRO R, V3, P3
[2]  
ELZOBI M, IN PRESS J COMBIN MA
[3]  
FUREDI Z, 1985, M KOMB GEORDN MENG O
[4]  
GRIGGS JR, 1987, ORDER, V4, P65
[5]   PROBLEMS ON CHAIN PARTITIONS [J].
GRIGGS, JR .
DISCRETE MATHEMATICS, 1988, 72 (1-3) :157-162
[6]  
Guy R. K., 1994, UNSOLVED PROBLEMS NU
[7]   Partitioning the Boolean lattice into chains of large minimum size [J].
Hsu, T ;
Logan, MJ ;
Shahriari, S ;
Towse, C .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2002, 97 (01) :62-84
[8]   PROOF OF A CONJECTURE ON PARTITIONS OF A BOOLEAN LATTICE [J].
LONC, Z .
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1991, 8 (01) :17-27
[9]  
LONC Z, 1993, DISCRETE MATH, V131, P173
[10]  
Sands B., 1985, C ORD SETS SZEG HUNG