Figures in squares

被引:81
作者
Mauduit, Christian [1 ]
Rivat, Joel [1 ]
机构
[1] Inst Math Luminy, CNRS, UMR 6206, FR-13288 Marseille 9, France
关键词
OF-DIGITS FUNCTION; POLYNOMIAL-SEQUENCES; C-GREATER-THAN-1; NUMBERS; VALUES; SUMS;
D O I
10.1007/s11511-009-0040-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we answer a question proposed by Gelfond in 1968. We prove that the sum of digits of squares written in a basis q a (c) 3/4 2 is equidistributed in arithmetic progressions.
引用
收藏
页码:107 / 148
页数:42
相关论文
共 29 条
[1]  
Allouche J.P., 2003, Automatic Sequences: Theory, Applications, Generalizations
[2]  
[Anonymous], 1972, Mathematical systems theory, DOI [10.1007/BF01706087, DOI 10.1007/BF01706087]
[3]  
[Anonymous], 1988, N HOLLAND MATH LIB
[4]  
[Anonymous], 2002, LECT NOTES MATH, DOI DOI 10.1007/B13861
[5]  
[Anonymous], 1960, Z. Math. Logik Grundlagen Math.
[6]   DISTRIBUTION OF THE VALUES OF Q-ADDITIVE FUNCTIONS ON POLYNOMIAL-SEQUENCES [J].
BASSILY, NL ;
KATAI, I .
ACTA MATHEMATICA HUNGARICA, 1995, 68 (04) :353-361
[7]   ON A PROBLEM IN ADDITIVE NUMBER THEORY [J].
BELLMAN, R ;
SHAPIRO, HN .
ANNALS OF MATHEMATICS, 1948, 49 (02) :333-340
[8]  
COQUET J, 1977, B SOC MATH FR, V105, P369
[9]   Sums of digits of multiples of integers [J].
Dartyge, C ;
Tenenbaum, G .
ANNALES DE L INSTITUT FOURIER, 2005, 55 (07) :2423-+
[10]   Congruences of sums of figures of polynomial values. [J].
Dartyge, C ;
Tenenbaum, G .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2006, 38 :61-69