A Deep Learning Model to Triage Screening Mammograms: A Simulation Study

被引:126
|
作者
Yala, Adam [1 ]
Schuster, Tal [1 ]
Miles, Randy [2 ]
Barzilay, Regina [1 ]
Lehman, Constance [2 ]
机构
[1] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[2] Harvard Med Sch, Dept Radiol, Massachusetts Gen Hosp, 55 Fruit St,WAC 240, Boston, MA 02114 USA
关键词
COMPUTER-AIDED DETECTION; BREAST-CANCER; RANDOMIZED-TRIAL; PERFORMANCE; MORTALITY; 10-YEAR;
D O I
10.1148/radiol.2019182908
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: Recent deep learning (DL) approaches have shown promise in improving sensitivity but have not addressed limitations in radiologist specificity or efficiency. Purpose: To develop a DL model to triage a portion of mammograms as cancer free, improving performance and workflow efficiency. Materials and Methods: In this retrospective study, 223 109 consecutive screening mammograms performed in 66 661 women from January 2009 to December 2016 were collected with cancer outcomes obtained through linkage to a regional tumor registry. This cohort was split by patient into 212 272, 25 999, and 26 540 mammograms from 56 831, 7021, and 7176 patients for training,validation, and testing, respectively. A DL model was developed to triage mammograms as cancer free and evaluated on the test set. A DL-triage workflow was simulated in which radiologists skipped mammograms triaged as cancer free (interpreting them as negative for cancer) and read mammograms not triaged as cancer free by using the original interpreting radiologists' assessments.Sensitivities, specificities, and percentage of mammograms read were calculated, with and without the DL-triage-simulated workflow. Statistics were computed across 5000 bootstrap samples to assess confidence intervals (CIs). Specificities were compared by using a two-tailed t test (P < .05) and sensitivities were compared by using a one-sided t test with a non inferiority margin of 5% (P < .05). Results: The test set included 7176 women (mean age, 57.8 years +/- 10.9 [standard deviation]). When reading all mammograms, radiologists obtained a sensitivity and specificity of 90.6% (173 of 191; 95% CI: 86.6%, 94.7%) and 93.5% (24 625 of 26 349; 95% CI: 93.3%, 93.9%). In the DL-simulated workflow, the radiologists obtained a sensitivity and specificity of 90.1% (172 of 191; 95% CI: 86.0%, 94.3%) and 94.2% (24 814 of 26 349; 95% CI: 94.0%, 94.6%) while reading 80.7% (21 420 of 26 540) of the mammograms. The simulated workflow improved specificity (P = .002) and obtained a noninferior sensitivity with a margin of 5% (P < .001). Conclusion: This deep learning model has the potential to reduce radiologist workload and significantly improve specificity without harming sensitivity. (C) RSNA, 2019
引用
收藏
页码:38 / 46
页数:9
相关论文
共 50 条
  • [1] Detecting and classifying lesions in mammograms with Deep Learning
    Ribli, Dezso
    Horvath, Anna
    Unger, Zsuzsa
    Pollner, Peter
    Csabai, Istvan
    SCIENTIFIC REPORTS, 2018, 8
  • [2] Mass Detection in Mammograms Using a Robust Deep Learning Model
    Singh, Vivek Kumar
    Abdel-Nasser, Mohamed
    Rashwan, Hatem A.
    Akram, Farhan
    Haffar, Rami
    Pandey, Nidhi
    Sarker, Md Mostafa Kamal
    Kohan, Sebastian
    Guma, Josep
    Romani, Santiago
    Puig, Domenec
    ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT, 2019, 319 : 365 - 372
  • [3] A study on effectiveness of screening mammograms
    Ren, JJ
    Peer, PGM
    INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2000, 29 (05) : 803 - 806
  • [4] Segmentation of Masses on Mammograms Using Data Augmentation and Deep Learning
    Felipe André Zeiser
    Cristiano André da Costa
    Tiago Zonta
    Nuno M. C. Marques
    Adriana Vial Roehe
    Marcelo Moreno
    Rodrigo da Rosa Righi
    Journal of Digital Imaging, 2020, 33 : 858 - 868
  • [5] Segmentation of Masses on Mammograms Using Data Augmentation and Deep Learning
    Zeiser, Felipe Andre
    da Costa, Cristiano Andre
    Zonta, Tiago
    Marques, Nuno M. C.
    Roehe, Adriana Vial
    Moreno, Marcelo
    Righi, Rodrigo da Rosa
    JOURNAL OF DIGITAL IMAGING, 2020, 33 (04) : 858 - 868
  • [6] Deep Learning Hyperparameter Optimization for Breast Mass Detection in Mammograms
    Sehgal, Adarsh
    Sehgal, Muskan
    La, Hung Manh
    Bebis, George
    ADVANCES IN VISUAL COMPUTING, ISVC 2022, PT II, 2022, 13599 : 270 - 283
  • [7] Automated Triage of Screening Breast MRI Examinations in High-Risk Women Using an Ensemble Deep Learning Model
    Bhowmik, Arka
    Monga, Natasha
    Belen, Kristin
    Varela, Keitha
    Sevilimedu, Varadan
    Thakur, Sunitha B.
    Martinez, Danny F.
    Sutton, Elizabeth J.
    Pinker, Katja
    Eskreis-Winkler, Sarah
    INVESTIGATIVE RADIOLOGY, 2023, 58 (10) : 710 - 719
  • [8] Microcalcification Detection in Mammograms Using Deep Learning
    Kahnouei, Mahmoud Shiri
    Giti, Masoumeh
    Akhaee, Mohammad Ali
    Ameri, Ali
    IRANIAN JOURNAL OF RADIOLOGY, 2022, 19 (01)
  • [9] Estimating Screening-Mammography Receiver Operating Characteristic (ROC) Curves from Stratified Random Samples of Screening Mammograms: A Simulation Study
    Zur, Richard M.
    Pesce, Lorenzo L.
    Jiang, Yulei
    ACADEMIC RADIOLOGY, 2015, 22 (05) : 580 - 590
  • [10] Deep Learning for Breast Cancer Diagnosis from Mammograms-A Comparative Study
    Tsochatzidis, Lazaros
    Costaridou, Lena
    Pratikakis, Ioannis
    JOURNAL OF IMAGING, 2019, 5 (03)