Broad Diversity of Near-Infrared Single-Photon Emitters in Silicon

被引:79
作者
Durand, A. [1 ,2 ]
Baron, Y. [1 ,2 ]
Redjem, W. [1 ,2 ]
Herzig, T. [3 ]
Benali, A. [4 ]
Pezzagna, S. [3 ]
Meijer, J. [3 ]
Kuznetsov, A. Yu [5 ]
Gerard, J-M [6 ,7 ]
Robert-Philip, I [1 ,2 ]
Abbarchi, M. [4 ]
Jacques, V [1 ,2 ]
Cassabois, G. [1 ,2 ]
Dreau, A. [1 ,2 ]
机构
[1] Univ Montpellier, Lab Charles Coulomb, F-34095 Montpellier, France
[2] CNRS, F-34095 Montpellier, France
[3] Univ Leipzig, Felix Bloch Inst Solid State Phys, Div Appl Quantwn Syst, Linneestr 5, D-04103 Leipzig, Germany
[4] Aix Marseille Univ, CNRS, Cent Marseille, IM2NP,UMR 7334, Campus St Jerome, F-13397 Marseille, France
[5] Univ Oslo, Dept Phys, NO-0316 Oslo, Norway
[6] Univ Grenoble Alpes, Dept Phys, IRIG PHELIQS, F-38000 Grenoble, France
[7] CEA Grenoble, F-38000 Grenoble, France
关键词
QUANTUM; DEFECTS; SPINS; LUMINESCENCE; RESONANCE; CARBIDE; DOPANTS;
D O I
10.1103/PhysRevLett.126.083602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report the detection of individual emitters in silicon belonging to seven different families of optically active point defects. These fluorescent centers are created by carbon implantation of a commercial silicon-on-insulator wafer usually employed for integrated photonics. Single photon emission is demonstrated over the 1.1-1.55 mu m range, spanning the O and C telecom bands. We analyze their photoluminescence spectra, dipolar emissions, and optical relaxation dynamics at 10 K. For a specific family, we show a constant emission intensity at saturation from 10 K to temperatures well above the 77 K liquid nitrogen temperature. Given the advanced control over nanofabrication and integration in silicon, these individual artificial atoms are promising systems to investigate for Si-based quantum technologies.
引用
收藏
页数:6
相关论文
共 36 条
[1]  
Aharonovich I, 2016, NAT PHOTONICS, V10, P631, DOI [10.1038/nphoton.2016.186, 10.1038/NPHOTON.2016.186]
[2]   Optical properties of an ensemble of G-centers in silicon [J].
Beaufils, C. ;
Redjem, W. ;
Rousseau, E. ;
Jacques, V. ;
Kuznetsov, A. Yu. ;
Raynaud, C. ;
Voisin, C. ;
Benali, A. ;
Herzig, T. ;
Pezzagna, S. ;
Meijer, J. ;
Abbarchi, M. ;
Cassabois, G. .
PHYSICAL REVIEW B, 2018, 97 (03)
[3]   Silicon-Integrated Telecommunications Photon-Spin Interface [J].
Bergeron, L. ;
Chartrand, C. ;
Kurkjian, A. T. K. ;
Morse, K. J. ;
Riemann, H. ;
Abrosimov, N., V ;
Becker, P. ;
Pohl, H-J ;
Thewalt, M. L. W. ;
Simmons, S. .
PRX QUANTUM, 2020, 1 (02)
[4]   Quantum nanophotonics with group IV defects in diamond [J].
Bradac, Carlo ;
Gao, Weibo ;
Forneris, Jacopo ;
Trusheim, Matthew E. ;
Aharonovich, Igor .
NATURE COMMUNICATIONS, 2019, 10 (1)
[5]   Highly enriched 28Si reveals remarkable optical linewidths and fine structure for well-known damage centers [J].
Chartrand, C. ;
Bergeron, L. ;
Morse, K. J. ;
Riemann, H. ;
Abrosimov, N., V ;
Becker, P. ;
Pohl, H-J ;
Simmons, S. ;
Thewalt, M. L. W. .
PHYSICAL REVIEW B, 2018, 98 (19)
[6]  
Christle DJ, 2015, NAT MATER, V14, P160, DOI [10.1038/nmat4144, 10.1038/NMAT4144]
[7]   THE OPTICAL-PROPERTIES OF LUMINESCENCE-CENTERS IN SILICON [J].
DAVIES, G .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1989, 176 (3-4) :83-188
[8]   First-Principles Calculations of Point Defects for Quantum Technologies [J].
Dreyer, Cyrus E. ;
Alkauskas, Audrius ;
Lyons, John L. ;
Janotti, Anderson ;
Van de Walle, Chris G. .
ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 48, 2018, 48 :1-26
[9]   Invited Review Article: Single-photon sources and detectors [J].
Eisaman, M. D. ;
Fan, J. ;
Migdall, A. ;
Polyakov, S. V. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2011, 82 (07)
[10]   THE POLARIZATION OF LUMINESCENCE IN DIAMOND [J].
ELLIOTT, RJ ;
MATTHEWS, IG ;
MITCHELL, EWJ .
PHILOSOPHICAL MAGAZINE, 1958, 3 (28) :360-369