Learning Efficient Point Cloud Generation for Dense 3D Object Reconstruction

被引:0
|
作者
Lin, Chen-Hsuan [1 ]
Kong, Chen [1 ]
Lucey, Simon [1 ]
机构
[1] Carnegie Mellon Univ, Robot Inst, Pittsburgh, PA 15213 USA
来源
THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE | 2018年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Conventional methods of 3D object generative modeling learn volumetric predictions using deep networks with 3D convolutional operations, which are direct analogies to classical 2D ones. However, these methods are computationally wasteful in attempt to predict 3D shapes, where information is rich only on the surfaces. In this paper, we propose a novel 3D generative modeling framework to efficiently generate object shapes in the form of dense point clouds. We use 2D convolutional operations to predict the 3D structure from multiple viewpoints and jointly apply geometric reasoning with 2D projection optimization. We introduce the pseudo-renderer, a differentiable module to approximate the true rendering operation, to synthesize novel depth maps for optimization. Experimental results for single-image 3D object reconstruction tasks show that we outperforms state-of-the-art methods in terms of shape similarity and prediction density.
引用
收藏
页码:7114 / 7121
页数:8
相关论文
共 50 条
  • [41] Bioinspired point cloud representation: 3D object tracking
    Orts-Escolano, Sergio
    Garcia-Rodriguez, Jose
    Cazorla, Miguel
    Morell, Vicente
    Azorin, Jorge
    Saval, Marcelo
    Garcia-Garcia, Alberto
    Villena, Victor
    NEURAL COMPUTING & APPLICATIONS, 2018, 29 (09) : 663 - 672
  • [42] Bioinspired point cloud representation: 3D object tracking
    Sergio Orts-Escolano
    Jose Garcia-Rodriguez
    Miguel Cazorla
    Vicente Morell
    Jorge Azorin
    Marcelo Saval
    Alberto Garcia-Garcia
    Victor Villena
    Neural Computing and Applications, 2018, 29 : 663 - 672
  • [43] Pointwise CNN for 3D Object Classification on Point Cloud
    Song, Wei
    Liu, Zishu
    Tian, Yifei
    Fong, Simon
    JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2021, 17 (04): : 787 - 800
  • [44] RealPoint3D: An Efficient Generation Network for 3D Object Reconstruction From a Single Image
    Zhang, Yang
    Liu, Zhen
    Liu, Tianpeng
    Peng, Bo
    Li, Xiang
    IEEE ACCESS, 2019, 7 : 57539 - 57549
  • [45] Stereo Point Cloud Refinement for 3D Object Detection
    Liu, Wangchao
    Wang, Teng
    Wang, Yang
    Zhang, Xiangyu
    Lou, Xin
    2021 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS (APCCAS 2021) & 2021 IEEE CONFERENCE ON POSTGRADUATE RESEARCH IN MICROELECTRONICS AND ELECTRONICS (PRIMEASIA 2021), 2021, : 61 - 64
  • [46] A technology for generation of space object optical image based on 3D point cloud model
    Lu T.
    Li X.
    Zhang Y.
    Yan Y.
    Yang W.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2020, 46 (02): : 274 - 286
  • [47] 3DDACNN: 3D dense attention convolutional neural network for point cloud based object recognition
    Xian-Feng Han
    Xin-Yi Huang
    Shi-Jie Sun
    Ming-Jie Wang
    Artificial Intelligence Review, 2022, 55 : 6655 - 6671
  • [48] Object Volume Estimation Based on 3D Point Cloud
    Chang, Wen-Chung
    Wu, Chia-Hung
    Tsai, Ya-Hui
    Chiu, Wei-Yao
    2017 INTERNATIONAL AUTOMATIC CONTROL CONFERENCE (CACS), 2017,
  • [49] 3DDACNN: 3D dense attention convolutional neural network for point cloud based object recognition
    Han, Xian-Feng
    Huang, Xin-Yi
    Sun, Shi-Jie
    Wang, Ming-Jie
    ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (08) : 6655 - 6671
  • [50] 3D Point Cloud Denoising and Normal Estimation for 3D Surface Reconstruction
    Liu, Chang
    Yuan, Ding
    Zhao, Hongwei
    2015 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), 2015, : 820 - 825