Equivariant symbol calculus for differential operators acting on forms

被引:19
作者
Boniver, F
Hansoul, S
Mathonet, P
Poncin, N
机构
[1] Univ Liege, Dept Math, B-4000 Cointe Ougree, Belgium
[2] Ctr Univ Luxembourg, Dept Math, L-1511 Luxembourg, Luxembourg
关键词
Casamir operators; classification; equivariant symbol calculus; modules of differential operators;
D O I
10.1023/A:1022251607566
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove the existence and uniqueness of a projectively equivariant symbol map (in the sense of Lecomte and Ovsienko) for the spaces D-p of differential operators transforming p-forms into functions, over R-n. As an application, we classify the Vect(M)-equivariant maps from D-p to D-q over a smooth manifold M, recovering and improving earlier results of N. Poncin. This provides the complete answer to a question raised by P. Lecomte about the extension of a certain intrinsic homotopy operator.
引用
收藏
页码:219 / 232
页数:14
相关论文
共 9 条
[1]  
BONIVER F, 2002, MATHRT0109032
[2]   Conformally equivariant quantization: Existence and uniqueness [J].
Duval, C ;
Lecomte, P ;
Ovsienko, V .
ANNALES DE L INSTITUT FOURIER, 1999, 49 (06) :1999-+
[3]   A SIMPLE GEOMETRICAL CONSTRUCTION OF DEFORMATION QUANTIZATION [J].
FEDOSOV, BV .
JOURNAL OF DIFFERENTIAL GEOMETRY, 1994, 40 (02) :213-238
[4]  
Humphreys J. E., 1978, INTRO LIE ALGEBRAS R
[5]  
Lecomte P., 1994, ANN GLOB ANAL GEOM, V12, P183, DOI DOI 10.1007/BF02108296
[6]   Projectively equivariant symbol calculus [J].
Lecomte, PBA ;
Ovsienko, VY .
LETTERS IN MATHEMATICAL PHYSICS, 1999, 49 (03) :173-196
[7]   Comparison of some modules of the Lie algebra of vector fields [J].
Lecomte, PBA ;
Mathonet, P ;
Tousset, E .
INDAGATIONES MATHEMATICAE-NEW SERIES, 1996, 7 (04) :461-471
[8]   Intertwining operators between some spaces of differential operators on a manifold [J].
Mathonet, P .
COMMUNICATIONS IN ALGEBRA, 1999, 27 (02) :755-776
[9]  
PONCIN N, 2002, EQUIVARIANT OPERATOR