Orthonormal bases associated with multi-knot piecewise linear function sequences on [0,1) n

被引:0
作者
Li, Yu Lan [2 ]
Yan, Dun Yan [1 ]
机构
[1] Chinese Acad Sci, Grad Univ, Sch Informat Sci & Engn, Beijing 100190, Peoples R China
[2] Shanghai High Sch 989, Shanghai 200231, Peoples R China
基金
中国国家自然科学基金;
关键词
spectral sequences; orthonormal basis; Fourier basis; SPECTRUM; SERIES;
D O I
10.1007/s10114-009-7702-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate two classes of orthonormal bases for L (2)([0, 1) (n) ). The exponential parts of those bases are multi-knot piecewise linear functions which are called spectral sequences. We characterize the multi-knot piecewise linear spectral sequences and give an application of the first class of piecewise linear spectral sequences.
引用
收藏
页码:1835 / 1848
页数:14
相关论文
共 20 条
[1]  
Cohen L., 1995, TIME FREQUENCY ANAL
[2]  
Daubechies Ingrid, 1992, Journal of the Acoustical Society of America
[3]  
Edwards R.E., 1979, Fourier Series, V1
[4]  
Edwards R. E., 1979, FOURIER SERIES, V64
[5]  
Grochenig K, 2001, Foundations of Time-Frequency Analysis. Applied andNumerical Harmonic Analysis, DOI DOI 10.1007/978-1-4612-0003-1
[6]  
Hernandez E., 1996, 1 COURSE WAVELETS, DOI 10.1201/9780367802349
[7]   The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J].
Huang, NE ;
Shen, Z ;
Long, SR ;
Wu, MLC ;
Shih, HH ;
Zheng, QN ;
Yen, NC ;
Tung, CC ;
Liu, HH .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 454 (1971) :903-995
[8]   Spectral sets and factorizations of finite Abelian groups [J].
Lagarias, JC ;
Wang, Y .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 145 (01) :73-98
[9]   Characterizations of multi-knot piecewise linear spectral sequences [J].
Li, Haitao ;
Yan, Dunyan .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2007, 27 (04) :401-422
[10]  
[李玉兰 LI Yu-Lan], 2009, [中国科学院研究生院学报, Journal of the Graduate School of the Academy of Sciences], V26, P37