STABILITY OF STATIONARY SOLUTIONS TO THE COMPRESSIBLE BIPOLAR EULER POISSON EQUATIONS

被引:0
作者
Cai, Hong [1 ]
Tan, Zhong [1 ,2 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
[2] Xiamen Univ, Fujian Prov Key Lab Math Modeling & Scienti fi c, Xiamen 361005, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Bipolar Euler-Poisson equations; stability; global solution; energy method; LARGE TIME BEHAVIOR; MULTIDIMENSIONAL HYDRODYNAMIC MODEL; GLOBAL SMOOTH SOLUTIONS; STEADY-STATE SOLUTIONS; ASYMPTOTIC-BEHAVIOR; BOUNDARY-CONDITIONS; 2-CARRIER PLASMAS; SEMICONDUCTORS; DECAY; CONVERGENCE;
D O I
10.3934/dcds.2017201
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the compressible bipolar Euler Poisson equations with a non flat doping profile in three dimensional space. The existence and uniqueness of the non constant stationary solutions are established under the smallness assumption on the gradient of the doping profile. Then we show the global existence of smooth solutions to the Cauchy problem near the stationary state provided the H-3 norms of the initial density and velocity are small, but the higher derivatives can be arbitrarily large.
引用
收藏
页码:4677 / 4696
页数:20
相关论文
共 35 条