Engineering Zero-Dimensional Quantum Confinement in Transition-Metal Dichalcogenide Heterostructures

被引:31
作者
Price, Christopher C. [1 ]
Frey, Nathan C. [1 ]
Jariwala, Deep [1 ,2 ]
Shenoy, Vivek B. [1 ]
机构
[1] Univ Penn, Dept Mat Sci & Engn, 3231 Walnut St, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Elect & Syst Engn, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
two-dimensional materials; quantum dot; transition-metal dichalcogenides; multiscale modeling; heterostructure; Dirac fermions; DIRAC FERMIONS; KLEIN PARADOX; 2D MATERIALS; GRAPHENE; GROWTH;
D O I
10.1021/acsnano.9b03716
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Achieving robust, localized quantum states in two-dimensional (2D) materials like graphene is desirable for optoelectronics and quantum information yet challenging due to the difficulties in confining Dirac fermions. Traditional colloidal nanoparticle and epitaxially grown quantum dots are also impractical for solid-state devices, due to either complex surface chemistry, unreliable spatial positioning, or lack of electrical and optical access. In this work, we design and optimize nanoscale monolayer transition-metal dichalcogenide (TMD) heterostructures to natively host massive Dirac fermion bound states. We develop an integrated multiscale approach to translate first-principles electronic structure to higher length scales, where we apply a continuum model to consider arbitrary 2D quantum dot geometries and sizes. Focusing on a model system of an MoS2 quantum dot in a WS2 matrix (MoS2/WS2), we find discrete bound states in triangular dots with side lengths up to 20 nm. We propose figures of merit that, when optimized for, result in heterostructure configurations engineered for maximally isolated bound states at room temperature. These design principles apply to the entire family of semiconducting TMD materials, and we predict 6.5 nm MoS2/WS2 (quantum dot/matrix) triangular dots and 4.5 nm MoSe2/WSe2 triangular dots as ideal systems for confining massive Dirac fermions.
引用
收藏
页码:8303 / 8311
页数:9
相关论文
共 51 条
[1]   Semiconductor clusters, nanocrystals, and quantum dots [J].
Alivisatos, AP .
SCIENCE, 1996, 271 (5251) :933-937
[2]   The Dirac equation with a δ-potential [J].
Benguria, RD ;
Castillo, H ;
Loewe, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (30) :5315-5320
[3]   Band nesting, massive Dirac fermions, and valley Lande and Zeeman effects in transition metal dichalcogenides: A tight-binding model [J].
Bieniek, Maciej ;
Korkusinski, Marek ;
Szulakowska, Ludmila ;
Potasz, Pawel ;
Ozfidan, Isil ;
Hawrylak, Pawel .
PHYSICAL REVIEW B, 2018, 97 (08)
[4]   Electronic Properties of MoS2-WS2 Heterostructures Synthesized with Two-Step Lateral Epitaxial Strategy [J].
Chen, Kun ;
Wan, Xi ;
Wen, Jinxiu ;
Xie, Weiguang ;
Kang, Zhiwen ;
Zeng, Xiaoliang ;
Chen, Huanjun ;
Xu, Jian-Bin .
ACS NANO, 2015, 9 (10) :9868-9876
[5]   Recent development of two-dimensional transition metal dichalcogenides and their applications [J].
Choi, Wonbong ;
Choudhary, Nitin ;
Han, Gang Hee ;
Park, Juhong ;
Akinwande, Deji ;
Lee, Young Hee .
MATERIALS TODAY, 2017, 20 (03) :116-130
[6]   SELF-CONSISTENT EFFECTIVE-MASS THEORY FOR INTRALAYER SCREENING IN GRAPHITE-INTERCALATION COMPOUNDS [J].
DIVINCENZO, DP ;
MELE, EJ .
PHYSICAL REVIEW B, 1984, 29 (04) :1685-1694
[7]  
Gong YJ, 2014, NAT MATER, V13, P1135, DOI [10.1038/NMAT4091, 10.1038/nmat4091]
[8]   Recent development in 2D materials beyond graphene [J].
Gupta, Ankur ;
Sakthivel, Tamilselvan ;
Seal, Suclipta .
PROGRESS IN MATERIALS SCIENCE, 2015, 73 :44-126
[9]  
Gutiérrez C, 2016, NAT PHYS, V12, P1069, DOI [10.1038/nphys3806, 10.1038/NPHYS3806]
[10]   Chemical Vapor Deposition Synthesis of Ultrathin Hexagonal ReSe2 Flakes for Anisotropic Raman Property and Optoelectronic Application [J].
Hafeez, Muhammad ;
Gan, Lin ;
Li, Huiqiao ;
Ma, Ying ;
Zhai, Tianyou .
ADVANCED MATERIALS, 2016, 28 (37) :8296-8301