Domination with exponential decay

被引:36
作者
Dankelmann, Peter [1 ]
Day, David [2 ]
Erwin, David [1 ]
Mukwembi, Simon [1 ]
Swart, Henda [1 ]
机构
[1] Univ KwaZulu Natal, Sch Math Sci, ZA-4041 Durban, South Africa
[2] Durban Univ Technol, Dept Math, ZA-4001 Durban, South Africa
基金
新加坡国家研究基金会;
关键词
Domination; Distance;
D O I
10.1016/j.disc.2008.06.040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph and S subset of V(G). For each vertex u is an element of S and foreach nu is an element of V(G) - S, we define (d) over bar (u, nu) = (d) over bar(nu, u) to be the length of a shortest path in < V(G)-(S- {u})> if such a path exists, and infinity otherwise. Let nu is an element of V(G). We define w(S)(nu) Sigma(u is an element of S) 1/2d(u,nu)-1 if nu is not an element of S, and w(S)(nu) = 2 if nu is an element of S. If, for each nu is an element of V(G), we have w(S)(nu) >= 1, then S is an exponential dominating set. The smallest cardinality of an exponential dominating set is the exponential domination number, gamma(e)(G). In this paper, we prove: (i) that if G is a connected graph of diameter d, then gamma(e)(G) >= (d + 2)/4, and, (ii) that if G is a connected graph of order n, then gamma(e)(G) <= 2/5 (n + 2). (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:5877 / 5883
页数:7
相关论文
共 10 条
[1]  
Chartrand G., 1996, Graphs & Digraphs, V3rd
[2]  
DAUGHERTY S, 2005, THESIS CLEMSON U
[3]  
Daugherty S., 2005, C NUMER, V174, P107
[4]  
Erwin D., 2004, B ICA, V42, P89
[5]  
Haynes T. W., 1998, DOMINATION GRAPHS AD
[6]  
Haynes TW, 1998, Fundamentals of domination in graphs, V1st, DOI [DOI 10.1201/9781482246582, 10.1201/9781482246582]
[7]  
Helly E., 1923, Jahres-berichte der Deutschen Math Verein, V32, P175
[8]  
Henning MA, 1998, MG TXB PUR APPL MATH, V209, P321
[9]   DOMINATION IN GRAPHS WITH MINIMUM DEGREE-2 [J].
MCCUAIG, W ;
SHEPHERD, B .
JOURNAL OF GRAPH THEORY, 1989, 13 (06) :749-762
[10]   R-DOMINATION IN GRAPHS [J].
SLATER, PJ .
JOURNAL OF THE ACM, 1976, 23 (03) :446-450