Demonstration of the trapped-ion quantum CCD computer architecture

被引:315
|
作者
Pino, J. M. [1 ]
Dreiling, J. M. [1 ]
Figgatt, C. [1 ]
Gaebler, J. P. [1 ]
Moses, S. A. [1 ]
Allman, M. S. [1 ]
Baldwin, C. H. [1 ]
Foss-Feig, M. [1 ]
Hayes, D. [1 ]
Mayer, K. [1 ]
Ryan-Anderson, C. [1 ]
Neyenhuis, B. [1 ]
机构
[1] Honeywell Quantum Solut, Broomfield, CO 80021 USA
关键词
D O I
10.1038/s41586-021-03318-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The trapped-ion quantum charge-coupled device (QCCD) proposal(1,2) lays out a blueprint for a universal quantum computer that uses mobile ions as qubits. Analogous to a charge-coupled device (CCD) camera, which stores and processes imaging information as movable electrical charges in coupled pixels, a QCCD computer stores quantum information in the internal state of electrically charged ions that are transported between different processing zones using dynamic electric fields. The promise of the QCCD architecture is to maintain the low error rates demonstrated in small trapped-ion experiments(3-5) by limiting the quantum interactions to multiple small ion crystals, then physically splitting and rearranging the constituent ions of these crystals into new crystals, where further interactions occur. This approach leverages transport timescales that are fast relative to the coherence times of the qubits, the insensitivity of the qubit states of the ion to the electric fields used for transport, and the low crosstalk afforded by spatially separated crystals. However, engineering a machine capable of executing these operations across multiple interaction zones with low error introduces many difficulties, which have slowed progress in scaling this architecture to larger qubit numbers. Here we use a cryogenic surface trap to integrate all necessary elements of the QCCD architecture-a scalable trap design, parallel interaction zones and fast ion transport-into a programmable trapped-ion quantum computer that has a system performance consistent with the low error rates achieved in the individual ion crystals. We apply this approach to realize a teleported CNOT gate using mid-circuit measurement(6), negligible crosstalk error and a quantum volume(7) of 2(6) = 64. These results demonstrate that the QCCD architecture provides a viable path towards high-performance quantum computers.
引用
收藏
页码:209 / +
页数:11
相关论文
共 50 条
  • [1] Demonstration of the trapped-ion quantum CCD computer architecture
    J. M. Pino
    J. M. Dreiling
    C. Figgatt
    J. P. Gaebler
    S. A. Moses
    M. S. Allman
    C. H. Baldwin
    M. Foss-Feig
    D. Hayes
    K. Mayer
    C. Ryan-Anderson
    B. Neyenhuis
    Nature, 2021, 592 : 209 - 213
  • [2] Demonstration of Shor Encoding on a Trapped-Ion Quantum Computer
    Nguyen, Nhung H.
    Li, Muyuan
    Green, Alaina M.
    Alderete, C. Huerta
    Zhu, Yingyue
    Zhu, Daiwei
    Brown, Kenneth R.
    Linke, Norbert M.
    PHYSICAL REVIEW APPLIED, 2021, 16 (02):
  • [3] Progress of quantum entanglement in a trapped-ion based quantum computer
    Yum, Dahyun
    Choi, Taeyoung
    CURRENT APPLIED PHYSICS, 2022, 41 : 163 - 177
  • [4] Nuclear spin qubits in a trapped-ion quantum computer
    Feng, M.
    Xu, Y. Y.
    Zhou, F.
    Suter, D.
    PHYSICAL REVIEW A, 2009, 79 (05):
  • [5] Trapped-ion qutrit spin molecule quantum computer
    Mc Hugh, D
    Twamley, J
    NEW JOURNAL OF PHYSICS, 2005, 7
  • [6] Benchmarking a trapped-ion quantum computer with 30 qubits
    Chen, Jwo-Sy
    Nielsen, Erik
    Ebert, Matthew
    Inlek, Volkan
    Wright, Kenneth
    Chaplin, Vandiver
    Maksymov, Andrii
    Paez, Eduardo
    Poudel, Amrit
    Maunz, Peter
    Gamble, John
    QUANTUM, 2024, 8
  • [7] Holographic dynamics simulations with a trapped-ion quantum computer
    Chertkov, Eli
    Bohnet, Justin
    Francois, David
    Gaebler, John
    Gresh, Dan
    Hankin, Aaron
    Lee, Kenny
    Hayes, David
    Neyenhuis, Brian
    Stutz, Russell
    Potter, Andrew C.
    Foss-Feig, Michael
    NATURE PHYSICS, 2022, 18 (09) : 1074 - +
  • [8] Holographic dynamics simulations with a trapped-ion quantum computer
    Eli Chertkov
    Justin Bohnet
    David Francois
    John Gaebler
    Dan Gresh
    Aaron Hankin
    Kenny Lee
    David Hayes
    Brian Neyenhuis
    Russell Stutz
    Andrew C. Potter
    Michael Foss-Feig
    Nature Physics, 2022, 18 : 1074 - 1079
  • [9] Constrained quantum optimization for extractive summarization on a trapped-ion quantum computer
    Pradeep Niroula
    Ruslan Shaydulin
    Romina Yalovetzky
    Pierre Minssen
    Dylan Herman
    Shaohan Hu
    Marco Pistoia
    Scientific Reports, 12
  • [10] Programmable Quantum Simulations on a Trapped-Ion Quantum Computer with a Global Drive
    Shapira, Yotam
    Markov, Jovan
    Akerman, Nitzan
    Stern, Ady
    Ozeri, Roee
    PHYSICAL REVIEW LETTERS, 2025, 134 (01)