VIDEO FRAME INTERPOLATION VIA RESIDUE REFINEMENT

被引:0
作者
Li, Haopeng
Yuan, Yuan [1 ]
Wang, Qi
机构
[1] Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Shaanxi, Peoples R China
来源
2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING | 2020年
基金
中国国家自然科学基金;
关键词
Video frame interpolation; residue refinement; adaptive weight map; U-Net;
D O I
10.1109/icassp40776.2020.9053987
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Video frame interpolation achieves temporal super-resolution by generating smooth transitions between frames. Although great success has been achieved by deep neural networks, the synthesized images stills suffer from poor visual appearance and unsatisfactory artifacts. In this paper, we propose a novel network structure that leverages residue refinement and adaptive weight to synthesize in-between frames. The residue refinement technique is used for optical flow and image generation for higher accuracy and better visual appearance, while the adaptive weight map combines the forward and backward warped frames to reduce the artifacts. Moreover, all sub-modules in our method are implemented by U-Net with less depths, so the efficiency is guaranteed. Experiments on public datasets demonstrate the effectiveness and superiority of our method over the state-of-the-art approaches.
引用
收藏
页码:2613 / 2617
页数:5
相关论文
共 21 条
[1]   Depth-Aware Video Frame Interpolation [J].
Bao, Wenbo ;
Lai, Wei-Sheng ;
Ma, Chao ;
Zhang, Xiaoyun ;
Gao, Zhiyong ;
Yang, Ming-Hsuan .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :3698-3707
[2]   High-Order Model and Dynamic Filtering for Frame Rate Up-Conversion [J].
Bao, Wenbo ;
Zhang, Xiaoyun ;
Chen, Li ;
Ding, Lianghui ;
Gao, Zhiyong .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (08) :3813-3826
[3]  
Bao Wenbo, 2018, CORR
[4]   DeepStereo: Learning to Predict New Views from the World's Imagery [J].
Flynn, John ;
Neulander, Ivan ;
Philbin, James ;
Snavely, Noah .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :5515-5524
[5]  
He K, 2016, PROC CVPR IEEE, P770, DOI [10.1109/CVPR.2016.90, DOI 10.1109/CVPR.2016.90]
[6]  
JADERBERG M, 2015, ADV NEURAL INFORM PR, P2017, DOI DOI 10.1145/2948076.2948084
[7]   Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation [J].
Jiang, Huaizu ;
Sun, Deqing ;
Jampani, Varun ;
Yang, Ming-Hsuan ;
Learned-Miller, Erik ;
Kautz, Jan .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :9000-9008
[8]   Perceptual Losses for Real-Time Style Transfer and Super-Resolution [J].
Johnson, Justin ;
Alahi, Alexandre ;
Li Fei-Fei .
COMPUTER VISION - ECCV 2016, PT II, 2016, 9906 :694-711
[9]  
King DB, 2015, ACS SYM SER, V1214, P1, DOI 10.1021/bk-2015-1214.ch001
[10]   Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network [J].
Ledig, Christian ;
Theis, Lucas ;
Huszar, Ferenc ;
Caballero, Jose ;
Cunningham, Andrew ;
Acosta, Alejandro ;
Aitken, Andrew ;
Tejani, Alykhan ;
Totz, Johannes ;
Wang, Zehan ;
Shi, Wenzhe .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :105-114