Non-viral strategies for delivering genome editing enzymes

被引:50
作者
Li, Jie [1 ,3 ]
Raise, Joachim Justad [1 ,2 ]
He, Maomao [1 ]
Das, Riddha [1 ]
Murthy, Niren [1 ,3 ]
机构
[1] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[3] Innovat Genom Inst, 2151 Berkeley Way, Berkeley, CA 94704 USA
基金
美国国家卫生研究院;
关键词
Genome editing; Non-viral; Protein delivery; CRISPR/Cas9; Nanoparticles; PEPTIDE-MEDIATED DELIVERY; CRISPR-CAS9; SYSTEM; EFFICIENT DELIVERY; CRE RECOMBINASE; MESSENGER-RNA; INTRACELLULAR DELIVERY; CAS9; RIBONUCLEOPROTEIN; NANOPARTICLE DELIVERY; CRISPR/CAS9; DELIVERY; LIPID NANOPARTICLES;
D O I
10.1016/j.addr.2020.09.004
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Genome-editing tools such as Cre recombinase (Cre), zinc -finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and most recently the clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein system have revolutionized biomedical research, agriculture, microbial engineering, and therapeutic development. Direct delivery of genome editing enzymes, as opposed to their corresponding DNA and mRNA precursors, is advantageous since they do not require transcription and/or translation. In addition, prolonged overexpression is a problem when delivering viral vector or plasmid DNA which is bypassed when delivering whole proteins. This lowers the risk of insertional mutagenesis and makes for relatively easier manufacturing. However, a major limitation of utilizing genome editing proteins in vivo is their low delivery efficiency, and currently the most successful strategy involves using potentially immunogenic viral vectors. This lack of safe and effective non-viral delivery systems is still a big hurdle for the clinical translation of such enzymes. This review discusses the challenges of non-viral delivery strategies of widely used genome editing enzymes, including Cre recombinase, ZFNs and TALENs, CRISPR/Cas9, and Cas12a (Cpf1) in their protein format and highlights recent innovations of non-viral delivery strategies which have the potential to overcome current delivery limitations and advance the clinical translation of genome editing. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:99 / 117
页数:19
相关论文
共 157 条
[1]  
AbdelHamid A, 2019, I C DES RELIABL COMM, P16, DOI [10.1109/drcn.2019.8713749, 10.1109/DRCN.2019.8713749]
[2]   The CRISPR tool kit for genome editing and beyond [J].
Adli, Mazhar .
NATURE COMMUNICATIONS, 2018, 9
[3]   Increasing Cas9-mediated homology-directed repair efficiency through covalent tethering of DNA repair template [J].
Aird, Eric J. ;
Lovendahl, Klaus N. ;
St Martin, Amber ;
Harris, Reuben S. ;
Gordon, Wendy R. .
COMMUNICATIONS BIOLOGY, 2018, 1
[4]   Endosomal Escape and Delivery of CRISPR/Cas9 Genome Editing Machinery Enabled by Nanoscale Zeolitic Imidazolate Framework [J].
Alsaiari, Shahad K. ;
Patil, Sachin ;
Alyami, Mram ;
Alamoudi, Kholod O. ;
Aleisa, Fajr A. ;
Merzaban, Jasmeen S. ;
Li, Mo ;
Khashab, Niveen M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (01) :143-146
[5]   Cell-Type-Specific CRISPR/Cas9 Delivery by Biomimetic Metal Organic Frameworks [J].
Alyami, Mram Z. ;
Alsaiari, Shahad K. ;
Li, Yanyan ;
Qutub, Somayah S. ;
Aleisa, Fajr A. ;
Sougrat, Rachid ;
Merzaban, Jasmeen S. ;
Khashab, Niveen M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (04) :1715-1720
[6]   Successful reprogramming of cellular protein production through mRNA delivered by functionalized lipid nanoparticles [J].
Arteta, Marianna Yanez ;
Kjellman, Tomas ;
Bartesaghi, Stefano ;
Wallin, Simonetta ;
Wu, Xiaoqiu ;
Kvist, Alexander J. ;
Dabkowska, Aleksandra ;
Szekely, Noemi ;
Radulescu, Aurel ;
Bergenholtz, Johan ;
Lindfors, Lennart .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (15) :E3351-E3360
[7]   CRISPR provides acquired resistance against viruses in prokaryotes [J].
Barrangou, Rodolphe ;
Fremaux, Christophe ;
Deveau, Helene ;
Richards, Melissa ;
Boyaval, Patrick ;
Moineau, Sylvain ;
Romero, Dennis A. ;
Horvath, Philippe .
SCIENCE, 2007, 315 (5819) :1709-1712
[8]   Alteration of Cre recombinase site specificity by substrate-linked protein evolution [J].
Buchholz, F ;
Stewart, AF .
NATURE BIOTECHNOLOGY, 2001, 19 (11) :1047-1052
[9]   In vitro evolution and analysis of HIV-1 LTR-specific recombinases [J].
Buchholz, Frank ;
Hauber, Joachim .
METHODS, 2011, 53 (01) :102-109
[10]   Gesicle-Mediated Delivery of CRISPR/Cas9 Ribonucleoprotein Complex for Inactivating the HIV Provirus [J].
Campbell, Lee A. ;
Coke, Lamarque M. ;
Richie, Christopher T. ;
Fortuno, Lowella V. ;
Park, Aaron Y. ;
Harvey, Brandon K. .
MOLECULAR THERAPY, 2019, 27 (01) :151-163