Super-zeta functions and regularized determinants associated with cofinite Fuchsian groups with finite-dimensional unitary representations

被引:1
作者
Friedman, Joshua S. [1 ]
Jorgenson, Jay [2 ]
Smajlovic, Lejla [3 ]
机构
[1] US Merchant Marine Acad, Dept Math & Sci, 300 Steamboat Rd, Kings Point, NY 11024 USA
[2] CUNY City Coll, Dept Math, Convent Ave & 138th St, New York, NY 10031 USA
[3] Univ Sarajevo, Dept Math, Zmaja Bosne 35, Sarajevo 71000, Bosnia & Herceg
关键词
zeta regularization; determinant of the Laplacian; HYPERBOLIC RIEMANN SURFACES; TRACE;
D O I
10.1007/s11005-021-01357-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let M be a finite volume, non-compact hyperbolic Riemann surface, possibly with elliptic fixed points, and let chi denote a finite dimensional unitary representation of the fundamental group of M. Let Delta denote the hyperbolic Laplacian which acts on smooth sections of the flat bundle over M associated with chi. From the spectral theory of Delta, there are three distinct sequences of numbers: the first coming from the eigenvalues of L-2 eigenfunctions, the second coming from resonances associated with the continuous spectrum, and the third being the set of negative integers. Using these sequences of spectral data, we employ the super-zeta approach to regularization and introduce two super-zeta functions, Z-(s, z) and Z(+)(s, z) that encode the spectrum of Delta in such a way that they can be used to define the regularized determinant of Delta - z(1- z)I. The resulting formula for the regularized determinant of Delta - z(1 - z)I in terms of the Selberg zeta function, see Theorem 5.3, encodes the symmetry z <-> 1 - z.
引用
收藏
页数:28
相关论文
共 22 条
[1]  
Adamchik VS, 2014, INT J MATH COMPUT SC, V9, P11
[2]  
Andrews G. E., 1999, Special Functions, V71, DOI DOI 10.1017/CBO9781107325937
[3]  
Elizalde E., 2012, Ten Physical Applications of Spectral Zeta Functions, DOI [10.1007/978-3-642-29405-1, DOI 10.1007/978-3-642-29405-1]
[4]   An asymptotic expansion of the double gamma function [J].
Ferreira, C ;
López, JL .
JOURNAL OF APPROXIMATION THEORY, 2001, 111 (02) :298-314
[5]  
Fisher J., 1987, APPROACH SELBERG TRA, DOI [10.1007/BFb0077696, DOI 10.1007/BFB0077696]
[6]  
Friedman JS, 2020, ANN I FOURIER, V70, P915
[7]  
Friedman JS, 2019, CONTEMP MATH, V732, P57, DOI 10.1090/conm/732/14785
[8]   ZETA FUNCTION REGULARIZATION OF PATH INTEGRALS IN CURVED SPACETIME [J].
HAWKING, SW .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 55 (02) :133-148
[9]  
HEJHAL DA, 1983, LECT NOTES MATH, V1001, P1
[10]  
Iwaniec H, 2002, GRADUATE STUDIES MAT, V53