Charge-switchable polymeric complex for glucose-responsive insulin delivery in mice and pigs

被引:135
|
作者
Wang, Jinqiang [1 ,2 ,3 ,4 ]
Yu, Jicheng [3 ,4 ]
Zhang, Yuqi [3 ,4 ]
Zhang, Xudong [1 ,2 ]
Kahkoska, Anna R. [5 ]
Chen, Guojun [1 ,2 ]
Wang, Zejun [1 ,2 ]
Sun, Wujin [1 ,6 ]
Cai, Lulu [1 ,2 ,7 ]
Chen, Zhaowei [3 ,4 ]
Qian, Chenggen [8 ,9 ]
Shen, Qundong [8 ,9 ]
Khademhosseini, Ali [1 ,2 ,6 ,10 ,11 ]
Buse, John B. [5 ]
Gu, Zhen [1 ,2 ,3 ,4 ,6 ,12 ]
机构
[1] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA 90032 USA
[2] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90032 USA
[3] Univ North Carolina Chapel Hill, Joint Dept Biomed Engn, Raleigh, NC 27599 USA
[4] North Carolina State Univ, Raleigh, NC 27695 USA
[5] Univ N Carolina, Sch Med, Dept Med, Chapel Hill, NC 27599 USA
[6] Univ Calif Los Angeles, Ctr Minimally Invas Therapeut, Los Angeles, CA 90032 USA
[7] Univ Elect Sci & Technol China, Sichuan Prov Peoples Hosp, Dept Pharm, Personalized Drug Therapy Key Lab Sichuan Prov, Chengdu 611731, Sichuan, Peoples R China
[8] Nanjing Univ, Sch Chem & Chem Engn, Dept Polymer Sci & Engn, MOE, Nanjing 210023, Jiangsu, Peoples R China
[9] Nanjing Univ, Sch Chem & Chem Engn, MOE, Key Lab High Performance Polymer Mat & Technol, Nanjing 210023, Jiangsu, Peoples R China
[10] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA USA
[11] Univ Calif Los Angeles, Dept Radiol, Los Angeles, CA USA
[12] Univ Calif Los Angeles, Jonsson Comprehens Canc Ctr, Los Angeles, CA 90024 USA
关键词
CATIONIC COPOLYMER HYDROGELS; CONTROLLED-RELEASE; DRUG-DELIVERY; SENSITIVE VESICLES; IN-VITRO; GEL; OXIDASE; CONCANAVALIN; KINETICS; PATCHES;
D O I
10.1126/sciadv.aaw4357
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Glucose-responsive insulin delivery systems with robust responsiveness that has been validated in animal models, especially in large animal models, remain elusive. Here, we exploit a new strategy to form a micro-sized complex between a charge-switchable polymer with a glucose-sensing moiety and insulin driven by electrostatic interaction. Both high insulin loading efficiency (95%) and loading capacity (49%) can be achieved. In the presence of a hyperglycemic state, the glucose-responsive phenylboronic acid (PBA) binds glucose instantly and converts the charge of the polymeric moiety from positive to negative, thereby enabling the release of insulin from the complex. Adjusting the ratio of the positively charged group to PBA achieves inhibited insulin release from the complex under normoglycemic conditions and promoted release under hyperglycemic conditions. Through chemically induced type 1 diabetic mouse and swine models, in vivo hyperglycemia-triggered insulin release with fast response is demonstrated after the complex is administrated by either subcutaneous injection or transdermal microneedle array patch.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] A Glucose-Responsive Cannula for Automated and Electronics-Free Insulin Delivery
    Fuchs, Stephanie
    Caserto, Julia S.
    Liu, Qingsheng
    Wang, Kecheng
    Shariati, Kaavian
    Hartquist, Chase M.
    Zhao, Xuanhe
    Ma, Minglin
    ADVANCED MATERIALS, 2024, 36 (27)
  • [32] In vitro and in vivo testing of glucose-responsive insulin-delivery microdevices in diabetic rats
    Chu, Michael K. L.
    Chen, Jian
    Gordijo, Claudia R.
    Chiang, Simon
    Ivovic, Alexander
    Koulajian, Khajag
    Giacca, Adria
    Wu, Xiao Yu
    Sun, Yu
    LAB ON A CHIP, 2012, 12 (14) : 2533 - 2539
  • [33] Latest advances in glucose-responsive microneedle-based systems for transdermal insulin delivery
    Martinez-Navarrete, Miquel
    Cordeiro, Ana Sara
    Perez-Lopez, Alexandre
    Guillot, Antonio Jose
    Melero, Ana
    Aparicio-Blanco, Juan
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 263
  • [34] Rational Design and Efficacy of Glucose-Responsive Insulin Therapeutics and Insulin Delivery Systems by Computation Using Connected Human and Rodent Models
    Yang, Sungyun
    Yang, Jing Fan
    Gong, Xun
    Weiss, Michael A.
    Strano, Michael S.
    ADVANCED HEALTHCARE MATERIALS, 2023, 12 (25)
  • [35] Engineered insulin-polycation complexes for glucose-responsive delivery with high insulin loading
    Volpatti, Lisa R.
    Burns, Delaney M.
    Basu, Arijit
    Langer, Robert
    Anderson, Daniel G.
    JOURNAL OF CONTROLLED RELEASE, 2021, 338 : 71 - 79
  • [36] pH-sensitive MOF integrated with glucose oxidase for glucose-responsive insulin delivery
    Zhang, Cheng
    Hong, Sheng
    Liu, Miao-Deng
    Yu, Wu-Yang
    Zhang, Ming-Kang
    Zhang, Lu
    Zeng, Xuan
    Zhang, Xian-Zheng
    JOURNAL OF CONTROLLED RELEASE, 2020, 320 : 159 - 167
  • [37] Glucose-Responsive Materials for Smart Insulin Delivery: From Protein-Based to Protein-Free Design
    Pal, Suchetan
    Rakshit, Tatini
    Saha, Sunita
    Jinagal, Dharmesh
    ACS MATERIALS AU, 2025, 5 (02): : 239 - 252
  • [38] In Vivo Performance and Biocompatibility of a Subcutaneous Implant for Real-Time Glucose-Responsive Insulin Delivery
    Chu, Michael K. L.
    Gordijo, Claudia R.
    Li, Jason
    Abbasi, Azhar Z.
    Giacca, Adria
    Plettenburg, Oliver
    Wu, Xiao Yu
    DIABETES TECHNOLOGY & THERAPEUTICS, 2015, 17 (04) : 255 - 267
  • [39] A composite hydrogel system containing glucose-responsive nanocarriers for oral delivery of insulin
    Li, Lei
    Jiang, Guohua
    Yu, Weijiang
    Liu, Depeng
    Chen, Hua
    Liu, Yongkun
    Huang, Qin
    Tong, Zaizai
    Yao, Juming
    Kong, Xiangdong
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2016, 69 : 37 - 45
  • [40] Polymer microneedles integrated with glucose-responsive mesoporous bioactive glass nanoparticles for transdermal delivery of insulin
    Jiang, Guohua
    Xu, Bin
    Zhu, Jiangying
    Zhang, Yang
    Liu, Tianqi
    Song, Gao
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2019, 5 (04):