Charge-switchable polymeric complex for glucose-responsive insulin delivery in mice and pigs

被引:135
|
作者
Wang, Jinqiang [1 ,2 ,3 ,4 ]
Yu, Jicheng [3 ,4 ]
Zhang, Yuqi [3 ,4 ]
Zhang, Xudong [1 ,2 ]
Kahkoska, Anna R. [5 ]
Chen, Guojun [1 ,2 ]
Wang, Zejun [1 ,2 ]
Sun, Wujin [1 ,6 ]
Cai, Lulu [1 ,2 ,7 ]
Chen, Zhaowei [3 ,4 ]
Qian, Chenggen [8 ,9 ]
Shen, Qundong [8 ,9 ]
Khademhosseini, Ali [1 ,2 ,6 ,10 ,11 ]
Buse, John B. [5 ]
Gu, Zhen [1 ,2 ,3 ,4 ,6 ,12 ]
机构
[1] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA 90032 USA
[2] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90032 USA
[3] Univ North Carolina Chapel Hill, Joint Dept Biomed Engn, Raleigh, NC 27599 USA
[4] North Carolina State Univ, Raleigh, NC 27695 USA
[5] Univ N Carolina, Sch Med, Dept Med, Chapel Hill, NC 27599 USA
[6] Univ Calif Los Angeles, Ctr Minimally Invas Therapeut, Los Angeles, CA 90032 USA
[7] Univ Elect Sci & Technol China, Sichuan Prov Peoples Hosp, Dept Pharm, Personalized Drug Therapy Key Lab Sichuan Prov, Chengdu 611731, Sichuan, Peoples R China
[8] Nanjing Univ, Sch Chem & Chem Engn, Dept Polymer Sci & Engn, MOE, Nanjing 210023, Jiangsu, Peoples R China
[9] Nanjing Univ, Sch Chem & Chem Engn, MOE, Key Lab High Performance Polymer Mat & Technol, Nanjing 210023, Jiangsu, Peoples R China
[10] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA USA
[11] Univ Calif Los Angeles, Dept Radiol, Los Angeles, CA USA
[12] Univ Calif Los Angeles, Jonsson Comprehens Canc Ctr, Los Angeles, CA 90024 USA
关键词
CATIONIC COPOLYMER HYDROGELS; CONTROLLED-RELEASE; DRUG-DELIVERY; SENSITIVE VESICLES; IN-VITRO; GEL; OXIDASE; CONCANAVALIN; KINETICS; PATCHES;
D O I
10.1126/sciadv.aaw4357
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Glucose-responsive insulin delivery systems with robust responsiveness that has been validated in animal models, especially in large animal models, remain elusive. Here, we exploit a new strategy to form a micro-sized complex between a charge-switchable polymer with a glucose-sensing moiety and insulin driven by electrostatic interaction. Both high insulin loading efficiency (95%) and loading capacity (49%) can be achieved. In the presence of a hyperglycemic state, the glucose-responsive phenylboronic acid (PBA) binds glucose instantly and converts the charge of the polymeric moiety from positive to negative, thereby enabling the release of insulin from the complex. Adjusting the ratio of the positively charged group to PBA achieves inhibited insulin release from the complex under normoglycemic conditions and promoted release under hyperglycemic conditions. Through chemically induced type 1 diabetic mouse and swine models, in vivo hyperglycemia-triggered insulin release with fast response is demonstrated after the complex is administrated by either subcutaneous injection or transdermal microneedle array patch.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Glucose-Responsive Nanoparticles for Rapid and Extended Self-Regulated Insulin Delivery
    Volpatti, Lisa R.
    Matranga, Morgan A.
    Cortinas, Abel B.
    Delcassian, Derfogail
    Daniel, Kevin B.
    Langer, Robert
    Anderson, Daniel G.
    ACS NANO, 2020, 14 (01) : 488 - 497
  • [22] Erythrocyte-Membrane-Camouflaged Nanoplatform for Intravenous Glucose-Responsive Insulin Delivery
    Fu, Yu
    Liu, Wei
    Wang, Lu-yao
    Zhu, Bi-yue
    Qu, Meng-ke
    Yang, Liu-qing
    Sun, Xun
    Gong, Tao
    Zhang, Zhi-rong
    Lin, Qing
    Zhang, Ling
    ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (41)
  • [23] Glucose-responsive oral insulin delivery for postprandial glycemic regulation
    Jicheng Yu
    Yuqi Zhang
    Jinqiang Wang
    Di Wen
    Anna R. Kahkoska
    John B. Buse
    Zhen Gu
    Nano Research, 2019, 12 : 1539 - 1545
  • [24] A Glucose-Responsive Polymer Nanocarrier Based on Sulfonated Resorcinarene for Controlled Insulin Delivery
    Sergeeva, Tatiana Yu
    Mukhitova, Rezeda K.
    Nizameev, Irek R.
    Kadirov, Marsil K.
    Sapunova, Anastasia S.
    Voloshina, Alexandra D.
    Mukhametzyanov, Timur A.
    Ziganshina, Albina Y.
    Antipin, Igor S.
    CHEMPLUSCHEM, 2019, 84 (10): : 1560 - 1566
  • [25] Hypoxia and H2O2 Dual-Sensitive Vesicles for Enhanced Glucose-Responsive Insulin Delivery
    Yu, Jicheng
    Qian, Chenggen
    Zhang, Yuqi
    Cui, Zheng
    Zhu, Yong
    Shen, Qundong
    Ligler, Frances S.
    Buse, John B.
    Gu, Zhen
    NANO LETTERS, 2017, 17 (02) : 733 - 739
  • [26] Glucose-responsive insulin by molecular and physical design
    Bakh, Naveed A.
    Cortinas, Abel B.
    Weiss, Michael A.
    Langer, Robert S.
    Anderson, Daniel G.
    Gu, Zhen
    Dutta, Sanjoy
    Strano, Michael S.
    NATURE CHEMISTRY, 2017, 9 (10) : 937 - 943
  • [27] Smart Microneedles with Porous Polymer Layer for Glucose-Responsive Insulin Delivery
    Ullah, Asad
    Choi, Hye Jin
    Jang, Mijin
    An, Sanghyun
    Kim, Gyu Man
    PHARMACEUTICS, 2020, 12 (07) : 1 - 15
  • [28] Glucose-Responsive Polymeric Micelles via Boronic Acid-Diol Complexation for Insulin Delivery at Neutral pH
    Gaballa, Heba
    Theato, Patrick
    BIOMACROMOLECULES, 2019, 20 (02) : 871 - 881
  • [29] Novel amphiphilic glucose-responsive modified starch micelles for insulin delivery
    Wen, Na
    Gao, Chunmei
    Lu, Shaoyu
    Xu, Xiubin
    Bai, Xiao
    Wu, Can
    Ning, Piao
    Zhang, Shaofei
    Liu, Mingzhu
    RSC ADVANCES, 2017, 7 (73) : 45978 - 45986
  • [30] Recent advances in glucose-responsive insulin delivery systems: novel hydrogels and future applications
    Mohanty, Avha R.
    Ravikumar, Akhila
    Peppas, Nicholas A.
    REGENERATIVE BIOMATERIALS, 2022, 9