Effect of the Niobium Doping Concentration on the Charge Storage Mechanism of Mesoporous Anatase Beads as an Anode for High-Rate Li-Ion Batteries

被引:16
作者
Cavallo, Carmen [3 ]
Calcagno, Giulio [1 ]
de Carvalho, Rodrigo Pereira [2 ]
Sadd, Matthew [3 ]
Gonano, Bruno [4 ]
Araujo, C. Moyses [2 ]
Palmqvist, Anders E. C. [1 ]
Matic, Aleksandar [3 ,4 ]
机构
[1] Chalmers Univ Technol, Dept Chem & Chem Engn, S-41296 Gothenburg, Sweden
[2] Uppsala Univ, Angstrom Lab, Mat Theory Div, Dept Phys & Astron, S-75120 Uppsala, Sweden
[3] Chalmers Univ Technol, Dept Phys, S-41296 Gothenburg, Sweden
[4] Univ Oslo, Ctr Mat Sci & Nanotechnol, Dept Chem, N-0371 Oslo, Norway
关键词
high-rate batteries; Li-ion batteries; mesoporous niobium doped anatase; n-type doped anode materials; DFT calculation; Rietveld refinement; DOPED TITANIUM-DIOXIDE; TIO2; ELECTRODES; ENERGY;
D O I
10.1021/acsaem.0c02157
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A promising strategy to improve the rate performance of Li-ion batteries is to enhance and facilitate the insertion of Li ions into nanostructured oxides like TiO2. In this work, we present a systematic study of pentavalent-doped anatase TiO2 materials for third-generation high-rate Li-ion batteries. Mesoporous niobium-doped anatase beads (Nb-doped TiO2) with different Nb5+ doping (n-type) concentrations (0.1, 1.0, and 10% at.) were synthesized via an improved template approach followed by hydrothermal treatment. The formation of intrinsic n-type defects and oxygen vacancies under RT conditions gives rise to a metallic-type conduction due to a shift of the Fermi energy level. The increase in the metallic character, confirmed by electrochemical impedance spectroscopy, enhances the performance of the anatase bead electrodes in terms of rate capability and provides higher capacities both at low and fast charging rates. The experimental data were supported by density functional theory (DFT) calculations showing how a different n-type doping can be correlated to the same electrochemical effect on the final device. The Nb-doped TiO2 electrode materials exhibit an improved cycling stability at all the doping concentrations by overcoming the capacity fade shown in the case of pure TiO2 beads. The 0.1% Nb-doped TiO2-based electrodes exhibit the highest reversible capacities of 180 mAh g(-1) at 1C (330 mA g(-1)) after 500 cycles and 110 mAh g(-1) at 10C (3300 mA g(-1)) after 1000 cycles. Our experimental and computational results highlight the possibility of using n-type doped TiO2 materials as anodes in high-rate Li-ion batteries.
引用
收藏
页码:215 / 225
页数:11
相关论文
共 53 条
[1]   Battery Materials Technology Trends and Market Drivers for Automotive Applications Challenges for science and industry in electric vehicles growth [J].
Ball, Sarah ;
Clark, Joanna ;
Cookson, James .
JOHNSON MATTHEY TECHNOLOGY REVIEW, 2020, 64 (03) :287-297
[2]   High performance Cr, N-codoped mesoporous TiO2 microspheres for lithium-ion batteries [J].
Bi, Zhonghe ;
Paranthaman, M. Parans ;
Guo, Bingkun ;
Unocic, Raymond R. ;
Meyer, Harry M., III ;
Bridges, Craig A. ;
Sun, Xiao-Guang ;
Dai, Sheng .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (06) :1818-1824
[3]   Walnut-like Porous Core/Shell TiO2 with Hybridized Phases Enabling Fast and Stable Lithium Storage [J].
Cai, Yi ;
Wang, Hong-En ;
Zhao, Xu ;
Huang, Fei ;
Wang, Chao ;
Deng, Zhao ;
Li, Yu ;
Cao, Guozhong ;
Su, Bao-Lian .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (12) :10652-10663
[4]   Fast charging negative electrodes based on anatase titanium dioxide beads for highly stable Li-ion capacitors [J].
Calcagno, G. ;
Lotsari, A. ;
Dang, A. ;
Lindberg, S. ;
Palmqvist, A. E. C. ;
Matic, A. ;
Cavallo, C. .
MATERIALS TODAY ENERGY, 2020, 16
[5]   Tuning the Electrochemical Properties of Organic Battery Cathode Materials: Insights from Evolutionary Algorithm DFT Calculations [J].
Carvalho, Rodrigo P. ;
Marchiori, Cleber F. N. ;
Brandell, Daniel ;
Araujo, C. Moyses .
CHEMSUSCHEM, 2020, 13 (09) :2402-2409
[6]   Investigation on Zr-, Hf-, and Ta-doped submicrometric beads for DSSC photoanodes [J].
Cavallo, Carmen ;
Mantella, Valeria ;
Dulong, Alexis ;
Di Pascasio, Francesco ;
Quaranta, Simone .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2017, 123 (03)
[7]   Synthesis of Monodisperse Mesoporous Titania Beads with Controllable Diameter, High Surface Areas, and Variable Pore Diameters (14-23 nm) [J].
Chen, Dehong ;
Cao, Lu ;
Huang, Fuzhi ;
Imperia, Paolo ;
Cheng, Yi-Bing ;
Caruso, Rachel A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (12) :4438-4444
[8]   Comparative study of rutile and anatase SnO2 and TiO2: Band-edge structures, dielectric functions, and polaron effects [J].
Dou, Maofeng ;
Persson, Clas .
JOURNAL OF APPLIED PHYSICS, 2013, 113 (08)
[9]   Nb-Doped TiO2 Nanofibers for Lithium Ion Batteries [J].
Fehse, M. ;
Cavaliere, S. ;
Lippens, P. E. ;
Savych, I. ;
Iadecola, A. ;
Monconduit, L. ;
Jones, D. J. ;
Roziere, J. ;
Fischer, F. ;
Tessier, C. ;
Stievanot, L. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (27) :13827-13835
[10]   Spatial dynamics of lithiation and lithium plating during high-rate operation of graphite electrodes [J].
Finegan, Donal P. ;
Quinn, Alexander ;
Wragg, David S. ;
Colclasure, Andrew M. ;
Lu, Xuekun ;
Tan, Chun ;
Heenan, Thomas M. M. ;
Jervis, Rhodri ;
Brett, Dan J. L. ;
Das, Supratim ;
Gao, Tao ;
Cogswell, Daniel A. ;
Bazant, Martin Z. ;
Di Michiel, Marco ;
Checchia, Stefano ;
Shearing, Paul R. ;
Smith, Kandler .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (08) :2570-2584