Exhaled breath analysis by use of eNose technology: a novel diagnostic tool for interstitial Lung disease

被引:58
作者
Moor, Catharina C. [1 ,2 ]
Oppenheimer, Judith C. [1 ,2 ]
Nakshbandi, Gizal [1 ,2 ]
Aerts, Joachim G. J. V. [1 ,2 ]
Brinkman, Paul [3 ]
Maitland-van der Zee, Anke-Hilse [3 ]
Wijsenbeek, Marlies S. [1 ,2 ]
机构
[1] Erasmus MC, Dept Resp Med, Ctr Excellence, Rotterdam, Netherlands
[2] Erasmus MC, Dept Resp Med, European Reference Ctr Interstitial Lung Dis & Sa, Rotterdam, Netherlands
[3] Univ Amsterdam, Dept Resp Med, Amsterdam UMC, Rotterdam, Netherlands
关键词
CLASSIFICATION; SARCOIDOSIS; UPDATE;
D O I
10.1183/13993003.02042-2020
中图分类号
R56 [呼吸系及胸部疾病];
学科分类号
摘要
Introduction: Early and accurate diagnosis of interstitial lung diseases (ILDs) remains a major challenge. Better noninvasive diagnostic tools are much needed. We aimed to assess the accuracy of exhaled breath analysis using eNose technology to discriminate between ILD patients and healthy controls, and to distinguish ILD subgroups. Methods: In this cross-sectional study, exhaled breath of consecutive ILD patients and healthy controls was analysed using eNose technology (SpiroNose). Statistical analyses were done using partial least square discriminant analysis and receiver operating characteristic analysis. Independent training and validation sets (2:1) were used in larger subgroups. Results: A total of 322 ILD patients and 48 healthy controls were included: sarcoidosis (n=141), idiopathic pulmonary fibrosis (IPF) (n=85), connective tissue disease-associated ILD (n=33), chronic hypersensitivity pneumonitis (n=25), idiopathic nonspecific interstitial pneumonia (n=10), interstitial pneumonia with autoimmune features (n=11) and other ILDs (n=17). eNose sensors discriminated between ILL) and healthy controls, with an area under the curve (AUC) of 1.00 in the training and validation sets. Comparison of patients with IPF and patients with other ILDs yielded an AUC of 0.91 (95% CI 0.85- 0.96) in the training set and an AUC of 0.87 (95% CI 0.77 0.96) in the validation set. The eNose reliably distinguished between individual diseases, with AUC values ranging from 0.85 to 0.99. Conclusions: eNose technology can completely distinguish ILD patients from healthy controls and can accurately discriminate between different ILD subgroups. Hence, exhaled breath analysis using eNose technology could be a novel biomarker in ILD, enabling timely diagnosis in the future.
引用
收藏
页数:8
相关论文
共 31 条
[1]   The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva [J].
Amann, Anton ;
Costello, Ben de Lacy ;
Miekisch, Wolfram ;
Schubert, Jochen ;
Buszewski, Boguslaw ;
Pleil, Joachim ;
Ratcliffe, Norman ;
Risby, Terence .
JOURNAL OF BREATH RESEARCH, 2014, 8 (03)
[2]   ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005 [J].
American Thoracic Society ;
European Respiratory Society .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2005, 171 (08) :912-930
[3]   Identification and prospective stability of electronic nose (eNose)-derived inflammatory phenotypes in patients with severe asthma [J].
Brinkman, Paul ;
Wagener, Ariane H. ;
Hekking, Pieter-Paul ;
Bansal, Aruna T. ;
Maitland-van der Zee, Anke-Hilse ;
Wang, Yuanyue ;
Weda, Hans ;
Knobel, Hugo H. ;
Vink, Teunis J. ;
Rattray, Nicholas J. ;
D'Amico, Arnaldo ;
Pennazza, Giorgio ;
Santonico, Marco ;
Lefaudeux, Diane ;
De Meulder, Bertrand ;
Auffray, Charles ;
Bakke, Per S. ;
Caruso, Massimo ;
Chanez, Pascal ;
Chung, Kian F. ;
Corfield, Julie ;
Dahlen, Sven-Erik ;
Djukanovic, Ratko ;
Geiser, Thomas ;
Horvath, Ildiko ;
Krug, Nobert ;
Musial, Jacek ;
Sun, Kai ;
Riley, John H. ;
Shaw, Dominic E. ;
Sandstrom, Thomas ;
Sousa, Ana R. ;
Montuschi, Paolo ;
Fowler, Stephen J. ;
Sterk, Peter J. .
JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2019, 143 (05) :1811-+
[4]   Breathomics and treatable traits for chronic airway diseases [J].
Brinkman, Paul ;
Maitland-van der Zee, Anke-Hilse ;
Wagener, Ariane H. .
CURRENT OPINION IN PULMONARY MEDICINE, 2019, 25 (01) :94-100
[5]   Statistical strategies for avoiding false discoveries in metabolomics and related experiments [J].
Broadhurst, David I. ;
Kell, Douglas B. .
METABOLOMICS, 2006, 2 (04) :171-196
[6]   Symptom prevalence of patients with fibrotic interstitial lung disease: a systematic literature review [J].
Carvajalino, Sabrina ;
Reigada, Carla ;
Johnson, Miriam J. ;
Dzingina, Mendwas ;
Bajwah, Sabrina .
BMC PULMONARY MEDICINE, 2018, 18
[7]   Barriers to timely diagnosis of interstitial lung disease in the real world: the INTENSITY survey [J].
Cosgrove, Gregory P. ;
Bianchi, Pauline ;
Danese, Sherry ;
Lederer, David J. .
BMC PULMONARY MEDICINE, 2018, 18
[8]   Presentation, diagnosis and clinical course of the spectrum of progressive-fibrosing interstitial lung diseases [J].
Cottin, Vincent ;
Hirani, Nikhil A. ;
Hotchkin, David L. ;
Nambiar, Anoop M. ;
Ogura, Takashi ;
Otaola, Maria ;
Skowasch, Dirk ;
Park, Jong Sun ;
Poonyagariyagorn, Hataya K. ;
Wuyts, Wim ;
Wells, Athol U. .
EUROPEAN RESPIRATORY REVIEW, 2018, 27 (150)
[9]   Prediction of response to anti-PD-1 therapy in patients with non-small-cell lung cancer by electronic nose analysis of exhaled breath [J].
de Vries, R. ;
Muller, M. ;
van der Noort, V. ;
Theelen, W. S. M. E. ;
Schouten, R. D. ;
Hummelink, K. ;
Muller, S. H. ;
Wolf-Lansdorf, M. ;
Dagelet, J. W. F. ;
Monkhorst, K. ;
Zee, A. H. Maitland-van der ;
Baas, P. ;
Sterk, P. J. ;
van den Heuvel, M. M. .
ANNALS OF ONCOLOGY, 2019, 30 (10) :1660-1666
[10]   Integration of electronic nose technology with spirometry: validation of a new approach for exhaled breath analysis [J].
de Vries, R. ;
Brinkman, P. ;
van der Schee, M. P. ;
Fens, N. ;
Dijkers, E. ;
Bootsma, S. K. ;
de Jongh, F. H. C. ;
Sterk, P. J. .
JOURNAL OF BREATH RESEARCH, 2015, 9 (04)