Trifluoropropylene Carbonate-Driven Interface Regulation Enabling Greatly Enhanced Lithium Storage Durability of Silicon-Based Anodes

被引:85
作者
Hu, Zhongli [1 ,2 ]
Zhao, Liubin [3 ]
Jiang, Tao [1 ,2 ]
Liu, Jie [1 ]
Rashid, Arif [1 ,2 ]
Sun, Pengfei [1 ,2 ]
Wang, Gulian [1 ,2 ]
Yan, Chenglin [1 ,2 ]
Zhang, Li [1 ,2 ]
机构
[1] Soochow Univ, Soochow Inst Energy & Mat Innovat, Coll Energy, Suzhou 215006, Peoples R China
[2] Soochow Univ, Key Lab Adv Carbon Mat & Wearable Energy Technol, Suzhou 215006, Peoples R China
[3] Southwest Univ, Dept Chem, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金;
关键词
film-forming additive; interface regulation; silicon-based anode; solid electrolyte interphase; trifluoropropylene carbonate; SOLID-ELECTROLYTE INTERPHASE; FLUOROETHYLENE CARBONATE; ION BATTERY; NANOSTRUCTURED SILICON; AMORPHOUS-SILICON; PERFORMANCE; GRAPHENE; NANOPARTICLES; STABILITY; SEI;
D O I
10.1002/adfm.201906548
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The extremely high specific capacity of Si anodes is a double-edged sword, bringing both high energy density and poor lifespan to Li-ion batteries (LIBs). Despite recent advances in constructing nanostructured/composite-Si anodes with an alleviated volume change and improved cycle life, daunting challenges still remain for Si anodes to suppress the irreversible capacity loss associated with the repeated rupture/reconstruction of the solid electrolyte interphase (SEI) layer. Herein, an electrolyte-based optimization strategy is devised to in situ construct a thin, continuous, and mechanically stable SEI film on Si surface by using a trifluoropropylene carbonate (TFPC) cosolvent, targeting highly stable Si-based anodes for LIBs. TFPC is featured with its low unoccupied molecular orbital energy, high reduction potential and outstanding film-forming capability, outperforming those of the state-of-the-art fluoroethylene carbonate additive. More importantly, TFPC plays a key role in regulating the structure and component of SEI layer. As such, 10 wt% TFPC addition promotes the formation of an optimal SEI film with appropriate amounts of polyolefins and LiF, endowing the SEI layer with enhanced rigidity and toughness as well as high ionic conductivity. Both the Si nanoparticle-based and Si/C composite electrodes deliver a greatly enhanced cycling stability, rate capability, and overall structural integrity in such optimized electrolyte.
引用
收藏
页数:11
相关论文
共 70 条
[21]   Lifetime vs. rate capability: Understanding the role of FEC and VC in high-energy Li-ion batteries with nano-silicon anodes [J].
Jaumann, Tony ;
Balach, Juan ;
Langklotz, Ulrike ;
Sauchuk, Viktar ;
Fritsch, Marco ;
Michaelis, Alexander ;
Teltevskij, Valerij ;
Mikhailova, Daria ;
Oswald, Steffen ;
Klose, Markus ;
Stephani, Guenter ;
Hauser, Ralf ;
Eckert, Juergen ;
Giebeler, Lars .
ENERGY STORAGE MATERIALS, 2017, 6 :26-35
[22]   Role of 1,3-Dioxolane and LiNO3 Addition on the Long Term Stability of Nanostructured Silicon/Carbon Anodes for Rechargeable Lithium Batteries [J].
Jaumann, Tony ;
Balach, Juan ;
Klose, Markus ;
Oswald, Steffen ;
Eckert, Juergen ;
Giebeler, Lars .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (03) :A557-A564
[23]   Self-healing SEI enables full-cell cycling of a silicon-majority anode with a coulombic efficiency exceeding 99.9% [J].
Jin, Yang ;
Li, Sa ;
Kushima, Akihiro ;
Zheng, Xiaoquan ;
Sun, Yongming ;
Xie, Jin ;
Sun, Jie ;
Xue, Weijiang ;
Zhou, Guangmin ;
Wu, Jiang ;
Shi, Feifei ;
Zhang, Rufan ;
Zhu, Zhi ;
So, Kangpyo ;
Cui, Yi ;
Li, Ju .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (02) :580-592
[24]   Identifying the Structural Basis for the Increased Stability of the Solid Electrolyte Interphase Formed on Silicon with the Additive Fluoroethylene Carbonate [J].
Jin, Yanting ;
Kneusels, Nis-Julian H. ;
Magusin, Pieter C. M. M. ;
Kim, Gunwoo ;
Castillo-Martinez, Elizabeth ;
Marbella, Lauren E. ;
Kerber, Rachel N. ;
Howe, Duncan J. ;
Paul, Subhradip ;
Liu, Tao ;
Grey, Clare P. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (42) :14992-15004
[25]   Real-Time NMR Investigations of Structural Changes in Silicon Electrodes for Lithium-Ion Batteries [J].
Key, Baris ;
Bhattacharyya, Rangeet ;
Morcrette, Mathieu ;
Seznec, Vincent ;
Tarascon, Jean-Marie ;
Grey, Clare P. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (26) :9239-9249
[26]   A Critical Size of Silicon Nano-Anodes for Lithium Rechargeable Batteries [J].
Kim, Hyejung ;
Seo, Minho ;
Park, Mi-Hee ;
Cho, Jaephil .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (12) :2146-2149
[27]   A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries [J].
Kovalenko, Igor ;
Zdyrko, Bogdan ;
Magasinski, Alexandre ;
Hertzberg, Benjamin ;
Milicev, Zoran ;
Burtovyy, Ruslan ;
Luzinov, Igor ;
Yushin, Gleb .
SCIENCE, 2011, 334 (6052) :75-79
[28]   SEI layer formation on amorphous si thin electrode during precycling [J].
Lee, Yong Min ;
Lee, Jun Young ;
Shim, Heung-Taek ;
Lee, Joong Kee ;
Park, Jung-Ki .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (06) :A515-A519
[29]   Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes [J].
Li, Xiaolin ;
Gu, Meng ;
Hu, Shenyang ;
Kennard, Rhiannon ;
Yan, Pengfei ;
Chen, Xilin ;
Wang, Chongmin ;
Sailor, Michael J. ;
Zhang, Ji-Guang ;
Liu, Jun .
NATURE COMMUNICATIONS, 2014, 5
[30]   Copper-Nanoparticle-Induced Porous Si/Cu Composite Films as an Anode for Lithium Ion Batteries [J].
Lin, Liang ;
Ma, Yating ;
Xie, Qingshui ;
Wang, Laisen ;
Zhang, Qinfa ;
Peng, Dong-Liang .
ACS NANO, 2017, 11 (07) :6893-6903