Dual Li-ion migration channels in an ester-rich copolymer/ionic liquid quasi-solid-state electrolyte for high-performance Li-S batteries

被引:21
作者
Cai, Xiaomin [1 ]
Ye, Bei [1 ]
Ding, Jianlong [1 ]
Chi, Ziyun [1 ]
Sun, Liping [1 ]
Saha, Petr [2 ]
Wang, Gengchao [1 ]
机构
[1] East China Univ Sci & Technol, Shanghai Key Lab Adv Polymer Mat, Shanghai Engn Res Ctr Hierarch Nanomat, Sch Mat Sci & Engn, POB 289,130 Meilong Rd, Shanghai 200237, Peoples R China
[2] Tomas Bata Univ, Univ Inst, Ctr Polymer Syst, Tr T Bati 5678, Zlin 76001, Czech Republic
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
LITHIUM-SULFUR BATTERIES; COMPOSITE POLYMER ELECTROLYTE; ENERGY-STORAGE; CATHODE; CONDUCTIVITY; PROGRESS;
D O I
10.1039/d0ta11180e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid-state polymer electrolytes are expected to fundamentally solve the instability and safety problems of liquid electrolytes for lithium-sulfur batteries. Herein, ionic liquids were introduced on the basis of constructing ester-rich copolymers, and dual Li-ion migration channels were built in an ester-rich copolymer/ionic liquid quasi-solid-state electrolyte (SPE-IL). "Association-disassociation" with the carbonyl groups and rapid ion exchange with the ionic liquids are the two migration modes that synergistically increase the room temperature ionic conductivity of the SPE-IL. In addition, the abundant ester groups provide strong chemisorption on lithium polysulfides and successfully inhibit the sulfur shuttle. More importantly, ionic liquids realize the "soft contact" between the electrode and the electrolyte, which is conducive to the construction of stable interfaces. Together with the GPa-level high modulus brought by vinyl carbonate, the formation of lithium dendrites is inhibited. As a result, the assembled lithium-sulfur battery displayed a high initial discharge capacity of 1106 mA h g(-1), good cycling stability (80.2% capacity retention after 300 cycles at 0.1 C) and superior rate performance.
引用
收藏
页码:2459 / 2469
页数:11
相关论文
共 65 条
[1]   Enhanced Air Stability and High Li-Ion Conductivity of Li6.988P2.994Nb0.2S10.934O0.6 Glass-Ceramic Electrolyte for All-Solid-State Lithium-Sulfur Batteries [J].
Ahmad, Niaz ;
Zhou, Lei ;
Faheem, Muhammad ;
Tufail, Muhammad Khurram ;
Yang, Le ;
Chen, Renjie ;
Zhou, Yaodan ;
Yang, Wen .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (19) :21548-21558
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   A Superior Polymer Electrolyte with Rigid Cyclic Carbonate Backbone for Rechargeable Lithium Ion Batteries [J].
Chai, Jingchao ;
Liu, Zhihong ;
Zhang, Jianjun ;
Sun, Jinran ;
Tian, Zeyi ;
Ji, Yanying ;
Tang, Kun ;
Zhou, Xinhong ;
Cui, Guanglei .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (21) :17897-17905
[4]   In Situ Generation of Poly (Vinylene Carbonate) Based Solid Electrolyte with Interfacial Stability for LiCoO2 Lithium Batteries [J].
Chai, Jingchao ;
Liu, Zhihong ;
Ma, Jun ;
Wang, Jia ;
Liu, Xiaochen ;
Liu, Haisheng ;
Zhang, Jianjun ;
Cui, Guanglei ;
Chen, Liquan .
ADVANCED SCIENCE, 2017, 4 (02)
[5]   A high-voltage poly(methylethyl α-cyanoacrylate) composite polymer electrolyte for 5 V lithium batteries [J].
Chai, Jingchao ;
Zhang, Jianjun ;
Hu, Pu ;
Ma, Jun ;
Du, Huiping ;
Yue, Liping ;
Zhao, Jianghui ;
Wen, Huijie ;
Liu, Zhihong ;
Cui, Guanglei ;
Chen, Liquan .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (14) :5191-5197
[6]   Dendrite-free Li metal deposition in all-solid-state lithium sulfur batteries with polymer-in-salt polysiloxane electrolyte [J].
Chen, Long ;
Fan, Li-Zhen .
ENERGY STORAGE MATERIALS, 2018, 15 :37-45
[7]   PEO/garnet composite electrolytes for solid-state lithium batteries: From "ceramic-in-polymer" to "polymer-in-ceramic" [J].
Chen, Long ;
Li, Yutao ;
Li, Shuai-Peng ;
Fan, Li-Zhen ;
Nan, Ce-Wen ;
Goodenough, John B. .
NANO ENERGY, 2018, 46 :176-184
[8]   Electrolyte Regulation towards Stable Lithium-Metal Anodes in Lithium-Sulfur Batteries with Sulfurized Polyacrylonitrile Cathodes [J].
Chen, Wei-Jing ;
Li, Bo-Quan ;
Zhao, Chang-Xin ;
Zhao, Meng ;
Yuan, Tong-Qi ;
Sun, Run-Cang ;
Huang, Jia-Qi ;
Zhang, Qiang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (27) :10732-10745
[9]   Realizing an Applicable "Solid → Solid" Cathode Process via a Transplantable Solid Electrolyte Interface for Lithium-Sulfur Batteries [J].
Chen, Xue ;
Yuan, Lixia ;
Li, Zhen ;
Chen, Sijing ;
Ji, Haijin ;
Qin, Yufei ;
Wu, Longsheng ;
Shen, Yue ;
Wang, Libin ;
Hu, Jingping ;
Huang, Yunhui .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (33) :29830-29837
[10]   A Metal Organic Framework Derived Solid Electrolyte for Lithium-Sulfur Batteries [J].
Chiochan, Poramane ;
Yu, Xingwen ;
Sawangphruk, Montree ;
Manthiram, Arumugam .
ADVANCED ENERGY MATERIALS, 2020, 10 (27)