GROUPOID ALGEBRAS AS COVARIANCE ALGEBRAS

被引:2
作者
Clark, Lisa Orloff [1 ]
Fletcher, James [1 ]
机构
[1] Victoria Univ Wellington, Sch Math & Stat, POB 600, Wellington 6140, New Zealand
关键词
Groupoid C*-algebra; product system; covariance algebra; C-ASTERISK-ALGEBRAS; PRODUCT SYSTEMS; SEMIGROUP; MODELS;
D O I
10.7900/jot.2019aug22.2266
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose G is a second-countable locally compact Hausdorff etale groupoid, G is a discrete group containing a unital subsemigroup P, and c : G -> G is a continuous cocycle. We derive conditions on the cocycle such that the reduced groupoid C*-algebra C-r* (G) may be realised as the covariance algebra of a product system over P with coefficient algebra C-r* (c(-1) (e)). When (G, P) is a quasi-lattice ordered group, we also derive conditions that allow C-r* (G) to be realised as the Cuntz-Nica-Pimsner algebra of a compactly aligned product system.
引用
收藏
页码:347 / 382
页数:36
相关论文
共 31 条
[1]   On partial actions and groupoids [J].
Abadie, F .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (04) :1037-1047
[2]   Product-system models for twisted C*-algebras of topological higher-rank graphs [J].
Armstrong, Becky ;
Brownlowe, Nathan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 466 (02) :1443-1475
[3]  
BOURNE C., ANN H POINCARE
[4]   A universal property for groupoid C*-algebras. I [J].
Buss, Alcides ;
Holkar, Rohit D. ;
Meyer, Ralf .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2018, 117 :345-375
[5]   Co-universal algebras associated to product systems, and gauge-invariant uniqueness theorems [J].
Carlsen, Toke M. ;
Larsen, Nadia S. ;
Sims, Aidan ;
Vittadello, Sean T. .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2011, 103 :563-600
[6]   Boundary quotients and ideals of Toeplitz C*-algebras of Artin groups [J].
Crisp, John ;
Laca, Marcelo .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 242 (01) :127-156
[7]  
Exel R., 2017, MATH SURVEYS MONOGR, V224
[8]   A new look at the crossed product of a C*-algebra by a semigroup of endomorphisms [J].
Exel, Ruy .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2008, 28 :749-789
[9]   Inverse semigroups and combinatorial C*-algebras [J].
Exel, Ruy .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2008, 39 (02) :191-313
[10]   Discrete product systems of Hilbert bimodules [J].
Fowler, NJ .
PACIFIC JOURNAL OF MATHEMATICS, 2002, 204 (02) :335-375