Energy localization on q-tori, long-term stability, and the interpretation of Fermi-Pasta-Ulam recurrences

被引:37
作者
Christodoulidi, H. [1 ]
Efthymiopoulos, C. [2 ]
Bountis, T. [1 ]
机构
[1] Univ Patras, Dept Math, GR-26110 Patras, Greece
[2] Acad Athens, Astron & Appl Math Res Ctr, GR-10673 Athens, Greece
来源
PHYSICAL REVIEW E | 2010年 / 81卷 / 01期
关键词
HAMILTONIAN-SYSTEMS; Q-BREATHERS; EQUIPARTITION; TIMES; EQUILIBRIUM; METASTABILITY; RESONANCE; INTEGRALS; DYNAMICS; THEOREM;
D O I
10.1103/PhysRevE.81.016210
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We focus on two approaches that have been proposed in recent years for the explanation of the so-called Fermi-Pasta-Ulam (FPU) paradox, i.e., the persistence of energy localization in the "low-q" Fourier modes of Fermi-Pasta-Ulam nonlinear lattices, preventing equipartition among all modes at low energies. In the first approach, a low-frequency fraction of the spectrum is initially excited leading to the formation of "natural packets" exhibiting exponential stability, while in the second, emphasis is placed on the existence of "q breathers," i.e., periodic continuations of the linear modes of the lattice, which are exponentially localized in Fourier space. Following ideas of the latter, we introduce in this paper the concept of "q-tori" representing exponentially localized solutions on low-dimensional tori and use their stability properties to reconcile these two approaches and provide a more complete explanation of the FPU paradox.
引用
收藏
页数:16
相关论文
共 42 条
  • [31] GIORGILLI A, 1999, HAMILTONIAN SYSTEMS
  • [32] GIORGILLI A, 1992, HAMILTONIAN DYNAMICA
  • [33] GIORGILLI A, 2006, B UNIONE MAT ITAL, V9, P1
  • [34] Hemmer P., 1959, PHYSISKE SEMINAR TRO, V2, P66
  • [35] Scaling properties of q-breathers in nonlinear acoustic lattices
    Kanakov, O. I.
    Flach, S.
    Ivanchenko, M. V.
    Mishagin, K. G.
    [J]. PHYSICS LETTERS A, 2007, 365 (5-6) : 416 - 420
  • [36] Lichtenberg AJ, 2008, LECT NOTES PHYS, V728, P21, DOI 10.1007/978-3-540-72995-2_2
  • [37] FURTHER RESULTS ON THE EQUIPARTITION THRESHOLD IN LARGE NONLINEAR HAMILTONIAN-SYSTEMS
    LIVI, R
    PETTINI, M
    RUFFO, S
    VULPIANI, A
    [J]. PHYSICAL REVIEW A, 1985, 31 (04): : 2740 - 2742
  • [38] Nekhoroshev N.N., 1977, Russian Mathematical Surveys, V32, P1
  • [39] Nonlinear stability around an elliptic equilibrium point in a Hamiltonian system
    Niederman, L
    [J]. NONLINEARITY, 1998, 11 (06) : 1465 - 1479
  • [40] Korteweg-de Vries equation and energy sharing in Fermi-Pasta-Ulam
    Ponno, A
    Bambusi, D
    [J]. CHAOS, 2005, 15 (01)