NONSPARSE COMPANION HESSENBERG MATRICES

被引:0
作者
Borobia, Alberto [1 ]
Canogar, Roberto [1 ]
机构
[1] Univ Nacl Educ Distancia UNED, Dept Matemat, Madrid, Spain
关键词
Companion matrix; Characteristic polynomial; Hessenberg matrix; Polynomial basis; Nilpotent matrix;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In recent years, there has been a growing interest in companion matrices. Sparse companion matrices are well known: every sparse companion matrix is equivalent to a Hessenberg matrix of a particular simple type. Recently, Deaett et al. [Electron. J. Linear Algebra, 35:223-247, 2019] started the systematic study of nonsparse companion matrices. They proved that every nonsparse companion matrix is nonderogatory, although not necessarily equivalent to a Hessenberg matrix. In this paper, the nonsparse companion matrices which are unit Hessenberg are described. In a companion matrix, the variables are the coordinates of the characteristic polynomial with respect to the monomial basis. A PB-companion matrix is a generalization, in the sense that the variables are the coordinates of the characteristic polynomial with respect to a general polynomial basis. The literature provides examples with Newton basis, Chebyshev basis, and other general orthogonal bases. Here, the PB-companion matrices which are unit Hessenberg are also described.
引用
收藏
页码:193 / 210
页数:18
相关论文
共 12 条
[1]   CONGENIAL MATRICES [J].
BARNETT, S .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1981, 41 (DEC) :277-298
[2]   COMPANION MATRIX ANALOG FOR ORTHOGONAL POLYNOMIALS [J].
BARNETT, S .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1975, 12 (03) :197-208
[3]   A note on generalized companion pencils in the monomial basis [J].
De Teran, Fernando ;
Hernando, Carla .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (01)
[4]   NON-SPARSE COMPANION MATRICES [J].
Deaett, Louis ;
Fischer, Jonathan ;
Garnett, Colin ;
Vander Meulen, Kevin N. .
ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2019, 35 :223-247
[5]   Companion matrix patterns (vol 463, pg 255, 2014) [J].
Eastman, B. ;
Kim, I. -J. ;
Shader, B. L. ;
Vander Meulen, K. N. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 538 :225-227
[6]   Companion matrix patterns [J].
Eastman, B. ;
Kim, I. -J. ;
Shader, B. L. ;
Vander Meulen, K. N. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 463 :255-272
[7]  
Farahat H.K., 1958, P EDINBURGH MATH SOC, V11, P143
[8]   A note on companion matrices [J].
Fiedler, M .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 372 :325-331
[9]   Characterization of a family of generalized companion matrices [J].
Garnett, C. ;
Shader, B. L. ;
Shader, C. L. ;
van den Driessche, P. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 498 :360-365
[10]   Extremal sparsity of the companion matrix of a polynomial [J].
Ma, Chao ;
Zhan, Xingzhi .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (01) :621-625