Polling on a space with general arrival and service time distribution

被引:10
作者
Altman, E
Foss, S
机构
关键词
polling systems; stability condition; general arrival; service and walking times;
D O I
10.1016/S0167-6377(97)00002-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider a polling system on a space with general independent arrival, service and walking times. We present necessary and sufficient conditions for stability, based on drift analysis of both the workload and the residual inter-arrival times within some embedded times called cycles. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:187 / 194
页数:8
相关论文
共 27 条
[1]   Bounds for performance measures of token rings [J].
Altman, E ;
Kofman, D .
IEEE-ACM TRANSACTIONS ON NETWORKING, 1996, 4 (02) :292-299
[2]   QUEUING IN-SPACE [J].
ALTMAN, E ;
LEVY, H .
ADVANCES IN APPLIED PROBABILITY, 1994, 26 (04) :1095-1116
[3]  
Altman E., 1992, Queueing Systems Theory and Applications, V11, P35, DOI 10.1007/BF01159286
[4]  
ALTMAN E, 1994, IFIP TRANS C, V21, P441
[5]  
ALTMAN E, 1996, STOCH MODELS, V12, P307
[6]  
ALTMAN E, 1993, IN PRESS OPER RES
[7]  
ALTMAN E, 1992, POLLING GRAPH GEN AR
[8]  
Asmussen S, 2008, APPL PROBABILITY QUE, V51
[9]   LIMIT-THEOREMS FOR QUEUING-NETWORKS .1. [J].
BOROVKOV, AA .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 1987, 31 (03) :413-427
[10]   ERGODICITY OF A POLLING NETWORK [J].
BOROVKOV, AA ;
SCHASSBERGER, R .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1994, 50 (02) :253-262