Li-rod structure in high-temperature gas-cooled reactor as a tritium production device for fusion reactors

被引:7
作者
Matsuura, Hideaki [1 ]
Okamoto, Ryo [1 ]
Koga, Yuki [1 ]
Suganuma, Takuro [1 ]
Katayama, Kazunari [2 ]
Otsuka, Teppei [3 ]
Goto, Minoru [4 ]
Nakagawa, Shigeaki [4 ]
Ishitsuka, Etsuo [4 ]
Tobita, Kenji [5 ]
机构
[1] Kyushu Univ, Dept Appl Quantum Phys Nucl Engn, 744 Motooka, Fukuoka, Fukuoka 8190395, Japan
[2] Kyushu Univ, Dept Adv Energy Eng Sci, 6-1 Kasugakouen, Kasuga, Fukuoka 8160811, Japan
[3] Kindai Univ, Dept Elect & Elect Engn, 3-4-1 Kowakae, Higashiosaka, Osaka 5770818, Japan
[4] Japan Atom Energy Agcy, 4002 Narita Cho, Oarai, Ibaraki 3111393, Japan
[5] Natl Inst Quantum & Radiol Sci Tech, Rokkasho, Aomori 0393212, Japan
关键词
Tritium; Lithium; Zirconium; Lithium-loading rod; High-temperature gas-cooled reactor; HTTR;
D O I
10.1016/j.fusengdes.2019.02.009
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Production of tritium using a high-temperature gas-cooled reactor (HTGR) has been studied for a prior engineering test with tritium handling and for the startup operation of a demonstration fusion reactor. For this purpose, the hydrogen absorption speed of Zr in a Li-loading rod for the reactor operation is experimentally measured, and an analysis model is presented to evaluate the tritium outflow from the Li rod in a high-temperature engineering test reactor (HTTR). On the basis of the presented model, the structure of the Li-loading rod for the demonstration test using the HTTR is proposed.
引用
收藏
页码:1077 / 1081
页数:5
相关论文
共 18 条
[1]  
Burn K. A., 2012, TTQP101519
[2]   TRITIUM SUPPLY FOR NEAR-TERM FUSION DEVICES [J].
GIERSZEWSKI, P .
FUSION ENGINEERING AND DESIGN, 1989, 10 :399-403
[3]   Trapping of hydrogen isotopes in radiation defects formed in tungsten by neutron and ion irradiations [J].
Hatano, Y. ;
Shimada, M. ;
Alimov, V. Kh. ;
Shi, J. ;
Hara, M. ;
Nozaki, T. ;
Oya, Y. ;
Kobayashi, M. ;
Okuno, K. ;
Oda, T. ;
Cao, G. ;
Yoshida, N. ;
Futagami, N. ;
Sugiyama, K. ;
Roth, J. ;
Tyburska-Pueschel, B. ;
Dorner, J. ;
Takagi, I. ;
Hatakeyama, M. ;
Kurishita, H. ;
Sokolov, M. A. .
JOURNAL OF NUCLEAR MATERIALS, 2013, 438 :S114-S119
[4]   TRITIUM HYDROGEN BARRIER DEVELOPMENT [J].
HOLLENBERG, GW ;
SIMONEN, EP ;
KALININ, G ;
TERLAIN, A .
FUSION ENGINEERING AND DESIGN, 1995, 28 :190-208
[5]   Evaluation of hydrogen permeation rate through zirconium pipe [J].
Katayama, Kazunari ;
Izumino, Jyunichi ;
Matsuura, Hideaki ;
Fukada, Satoshi .
NUCLEAR MATERIALS AND ENERGY, 2018, 16 :12-18
[6]   EVALUATION OF TRITIUM CONFINEMENT PERFORMANCE OF ALUMINA AND ZIRCONIUM FOR TRITIUM PRODUCTION IN A HIGH-TEMPERATURE GAS-COOLED REACTOR FOR FUSION REACTORS [J].
Katayama, Kazunari ;
Ushida, Hiroki ;
Matsuura, Hideaki ;
Fukada, Satoshi ;
Goto, Minoru ;
Nakagawa, Shigeaki .
FUSION SCIENCE AND TECHNOLOGY, 2015, 68 (03) :662-668
[7]   Study on lithium rod test module and irradiation method for tritium production using high temperature gas-cooled reactor [J].
Koga, Yuki ;
Matsuura, Hideaki ;
Ida, Yuma ;
Okamoto, Ryo ;
Katayama, Kazunari ;
Otsuka, Teppei ;
Goto, Minoru ;
Nakagawa, Shigeaki ;
Nagasumi, Satoru ;
Ishitsuka, Etsuo ;
Shimazaki, Yosuke .
FUSION ENGINEERING AND DESIGN, 2018, 136 :587-591
[8]   Ion beam analysis of deuterium-implanted Al2O3 and tungsten [J].
Macaulay-Newcombe, RG ;
Thompson, DA .
JOURNAL OF NUCLEAR MATERIALS, 1998, 258 :1109-1113
[9]   Performance of high-temperature gas-cooled reactor as a tritium production device for fusion reactors [J].
Matsuura, H. ;
Kouchi, S. ;
Nakaya, H. ;
Yasumoto, T. ;
Nakao, Y. ;
Shimakawa, S. ;
Goto, M. ;
Nakagawa, S. ;
Nishikawa, M. .
NUCLEAR ENGINEERING AND DESIGN, 2012, 243 :95-101
[10]   Study on Tritium Production Using a High-Temperature Gas-Cooled Reactor for Fusion Reactors: Evaluation of Tritium Outflow by Non-Equilibrium Diffusion Simulations [J].
Nagasumi, S. ;
Matsuura, H. ;
Katayama, K. ;
Otsuka, T. ;
Goto, M. ;
Nakagawa, S. .
FUSION SCIENCE AND TECHNOLOGY, 2017, 72 (04) :753-759