Non-uniform shape-preserving subdivision scheme for surface interpolation

被引:0
|
作者
Dong, WL [1 ]
Li, JK [1 ]
Kuo, CCJ [1 ]
机构
[1] Univ So Calif, Integrated Media Syst Ctr, Los Angeles, CA 90089 USA
来源
IMAGE AND VIDEO COMMUNICATIONS AND PROCESSING 2000 | 2000年 / 3974卷
关键词
3-D meshes; subdivision surfaces; adaptive subdivision; viewing information; sharp features; piecewise smooth surfaces;
D O I
10.1117/12.382941
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Recursive subdivision on 3-D meshes with arbitrary topology has been widely used in computer graphics and CAD/CAM systems. In this paper, we provide a non-uniform subdivision algorithm based on the modified Butterfly subdivision scheme. We adopt several efficient refinement criteria based on different kinds of viewing information such as the viewing frustum, surface orientation, screen-space visibility error, and local mesh flatness. We further generalize the modified Butterfly scheme to model the natural features of 3-D objects (such as creases, cusps and darts) by deriving a set of subdivision rules, To produce desired piecewise smooth surfaces from a recursive subdivision process, we use tagged meshes to model sharp features and classify the edge set into three categories: normal edges, sharp edges, and near-crease edges. An interactive subdivision system is constructed for users to easily specify sharp features.
引用
收藏
页码:1016 / 1027
页数:6
相关论文
共 50 条
  • [1] Shape-Preserving Polynomial Interpolation Scheme
    M. Hussain
    M. Z. Hussain
    M. Sarfraz
    Iranian Journal of Science and Technology, Transactions A: Science, 2016, 40 : 9 - 18
  • [2] Shape-Preserving Polynomial Interpolation Scheme
    Hussain, M.
    Hussain, M. Z.
    Sarfraz, M.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2016, 40 (A1): : 9 - 18
  • [3] Shape-preserving interpolation by splines using vector subdivision
    Goodman, TNT
    Ong, BH
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2005, 22 (01) : 49 - 77
  • [4] Shape-preserving interpolation by splines using vector subdivision
    T. N. T. Goodman
    B. H. Ong
    Advances in Computational Mathematics, 2005, 22 : 49 - 77
  • [5] Shape-Preserving Rational Interpolation Scheme for Regular Surface Data
    Hussain M.
    Hussain M.Z.
    Sarfraz M.
    International Journal of Applied and Computational Mathematics, 2016, 2 (4) : 713 - 747
  • [6] A local shape-preserving interpolation scheme for scattered data
    Costantini, P
    Manni, C
    COMPUTER AIDED GEOMETRIC DESIGN, 1999, 16 (05) : 385 - 405
  • [7] Curve interpolation based on non-uniform Catmull-Clark subdivision scheme
    Zhang, Jing-Qiao
    Wang, Guo-Jin
    Zheng, Jian-Min
    Ruan Jian Xue Bao/Journal of Software, 2003, 14 (12): : 2082 - 2091
  • [8] Ternary shape-preserving subdivision schemes
    Pitolli, Francesca
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2014, 106 : 185 - 194
  • [9] SHAPE-PRESERVING BIVARIATE INTERPOLATION
    COSTANTINI, P
    FONTANELLA, F
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (02) : 488 - 506
  • [10] Shape-preserving curve interpolation
    Sarfraz, Muhammad
    Hussain, Malik Zawwar
    Hussain, Maria
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2012, 89 (01) : 35 - 53