Computation offloading in Edge Computing environments using Artificial Intelligence techniques

被引:35
|
作者
Carvalho, Goncalo [1 ]
Cabral, Bruno [1 ]
Pereira, Vasco [1 ]
Bernardino, Jorge [1 ,2 ]
机构
[1] Univ Coimbra, Ctr Informat & Syst, Dept Informat Engn, Coimbra, Portugal
[2] Polytech Coimbra, ISEC, Coimbra, Portugal
关键词
Artificial Intelligence; Computation offloading; Edge Computing; Machine Learning; OF-THE-ART; MOBILE EDGE; RESOURCE-ALLOCATION; CLOUD; FOG; IOT; EXECUTION; FRAMEWORK; THINGS; GAME;
D O I
10.1016/j.engappai.2020.103840
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Edge Computing (EC) is a recent architectural paradigm that brings computation close to end-users with the aim of reducing latency and bandwidth bottlenecks, which 5G technologies are committed to further reduce, while also achieving higher reliability. EC enables computation offloading from end devices to edge nodes. Deciding whether a task should be offloaded, or not, is not trivial. Moreover, deciding when and where to offload a task makes things even harder and making inadequate or off-time decisions can undermine the EC approach. Recently, Artificial Intelligence (AI) techniques, such as Machine Learning (ML), have been used to help EC systems cope with this problem. AI promises accurate decisions, higher adaptability and portability, thus diminishing the cost of decision-making and the probability of error. In this work, we perform a literature review on computation offloading in EC systems with and without AI techniques. We analyze several AI techniques, especially ML-based, that display promising results, overcoming the shortcomings of current approaches for computing offloading coordination We sorted the ML algorithms into classes for better analysis and provide an in-depth analysis on the use of AI for offloading, in particular, in the use case of offloading in Vehicular Edge Computing Networks, actually one technology that gained more relevance in the last years, enabling a vast amount of solutions for computation and data offloading. We also discuss the main advantages and limitations of offloading, with and without the use of AI techniques.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Toward Computation Offloading in Edge Computing: A Survey
    Jiang, Congfeng
    Cheng, Xiaolan
    Gao, Honghao
    Zhou, Xin
    Wan, Jian
    IEEE ACCESS, 2019, 7 : 131543 - 131558
  • [2] Computation Offloading Toward Edge Computing
    Lin, Li
    Liao, Xiaofei
    Jin, Hai
    Li, Peng
    PROCEEDINGS OF THE IEEE, 2019, 107 (08) : 1584 - 1607
  • [3] A survey on computation offloading modeling for edge computing
    Lin, Hai
    Zeadally, Sherali
    Chen, Zhihong
    Labiod, Houda
    Wang, Lusheng
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2020, 169
  • [4] Understanding Edge Computing: Engineering Evolution With Artificial Intelligence
    Huh, Jun-Ho
    Seo, Yeong-Seok
    IEEE ACCESS, 2019, 7 : 164229 - 164245
  • [5] A Survey of Computation Offloading in Edge Computing
    Zheng, Tao
    Wan, Jian
    Zhang, Jilin
    Jiang, Congfeng
    Jia, Gangyong
    PROCEEDINGS OF THE 2020 INTERNATIONAL CONFERENCE ON COMPUTER, INFORMATION AND TELECOMMUNICATION SYSTEMS (CITS), 2020, : 12 - 17
  • [6] Artificial Intelligence Techniques for Securing Fog Computing Environments: Trends, Challenges, and Future Directions
    Alsadie, Deafallah
    IEEE ACCESS, 2024, 12 : 151598 - 151648
  • [7] Computation Offloading Strategy in Mobile Edge Computing
    Sheng, Jinfang
    Hu, Jie
    Teng, Xiaoyu
    Wang, Bin
    Pan, Xiaoxia
    INFORMATION, 2019, 10 (06)
  • [8] Learning for Computation Offloading in Mobile Edge Computing
    Dinh, Thinh Quang
    La, Quang Duy
    Quek, Tony Q. S.
    Shin, Hyundong
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2018, 66 (12) : 6353 - 6367
  • [9] Distributed Optimization for Computation Offloading in Edge Computing
    Lin, Rongping
    Zhou, Zhijie
    Luo, Shan
    Xiao, Yong
    Wang, Xiong
    Wang, Sheng
    Zukerman, Moshe
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 19 (12) : 8179 - 8194
  • [10] Energy-Efficient Computation Offloading in Collaborative Edge Computing
    Lin, Rongping
    Xie, Tianze
    Luo, Shan
    Zhang, Xiaoning
    Xiao, Yong
    Moran, Bill
    Zukerman, Moshe
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (21) : 21305 - 21322