Rank-one quadratic twists of an infinite family of elliptic curves
被引:11
|
作者:
Byeon, Dongho
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Dept Math, Seoul, South KoreaSeoul Natl Univ, Dept Math, Seoul, South Korea
Byeon, Dongho
[1
]
Jeon, Daeyeol
论文数: 0引用数: 0
h-index: 0
机构:
Kongju Natl Univ, Dept Math Educ, Kong Ju 314701, South KoreaSeoul Natl Univ, Dept Math, Seoul, South Korea
Jeon, Daeyeol
[2
]
Kim, Chang Heon
论文数: 0引用数: 0
h-index: 0
机构:
Hanyang Univ, Dept Math, Seoul 133791, South KoreaSeoul Natl Univ, Dept Math, Seoul, South Korea
Kim, Chang Heon
[3
]
机构:
[1] Seoul Natl Univ, Dept Math, Seoul, South Korea
[2] Kongju Natl Univ, Dept Math Educ, Kong Ju 314701, South Korea
[3] Hanyang Univ, Dept Math, Seoul 133791, South Korea
来源:
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK
|
2009年
/
633卷
关键词:
MODULAR L-FUNCTIONS;
L-SERIES;
POINTS;
D O I:
10.1515/CRELLE.2009.060
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
A conjecture of Goldfeld implies that a positive proportion of quadratic twists of an elliptic curve E/Q has (analytic) rank 1. This assertion has been confirmed by Vatsal [V1] and the first author [By] for only two elliptic curves. Here we confirm this assertion for infinitely many elliptic curves E/Q using the Heegner divisors, the 3-part of the class groups of quadratic fields, and a variant of the binary Goldbach problem for polynomials.
机构:
Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USA
Acad Romana, Inst Math Simion Stoilow, Sect 1, Bucharest 010702, Romania
Inst Adv Study, Princeton, NJ 08540 USAUniv Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USA
Cojocaru, Alina-Carmen
Grant, David
论文数: 0引用数: 0
h-index: 0
机构:
Univ Colorado, Dept Math, Boulder, CO 80309 USAUniv Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USA
Grant, David
Jones, Nathan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Mississippi, Dept Math, University, MS 38677 USAUniv Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USA