Rank-one quadratic twists of an infinite family of elliptic curves

被引:11
作者
Byeon, Dongho [1 ]
Jeon, Daeyeol [2 ]
Kim, Chang Heon [3 ]
机构
[1] Seoul Natl Univ, Dept Math, Seoul, South Korea
[2] Kongju Natl Univ, Dept Math Educ, Kong Ju 314701, South Korea
[3] Hanyang Univ, Dept Math, Seoul 133791, South Korea
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2009年 / 633卷
关键词
MODULAR L-FUNCTIONS; L-SERIES; POINTS;
D O I
10.1515/CRELLE.2009.060
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A conjecture of Goldfeld implies that a positive proportion of quadratic twists of an elliptic curve E/Q has (analytic) rank 1. This assertion has been confirmed by Vatsal [V1] and the first author [By] for only two elliptic curves. Here we confirm this assertion for infinitely many elliptic curves E/Q using the Heegner divisors, the 3-part of the class groups of quadratic fields, and a variant of the binary Goldbach problem for polynomials.
引用
收藏
页码:67 / 76
页数:10
相关论文
共 22 条
[1]  
Birch B, 1984, E HORWOOD SER MATH A, P13
[2]   On the modularity of elliptic curves over Q: Wild 3-adic exercises [J].
Breuil, C ;
Conrad, B ;
Diamond, F ;
Taylor, R .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 14 (04) :843-939
[3]  
Brüdern J, 2000, MATHEMATIKA, V47, P117
[4]   Ranks of quadratic twists of an elliptic curve [J].
Byeon, D .
ACTA ARITHMETICA, 2004, 114 (04) :391-396
[5]   DENSITY OF DISCRIMINATS OF CUBIC FIELDS .2. [J].
DAVENPORT, H ;
HEILBRONN, H .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1971, 322 (1551) :405-+
[6]   RATIONAL TORSION ON OPTIMAL CURVES [J].
Dummigan, Neil .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2005, 1 (04) :513-531
[7]  
GOLDFELD D, 1979, SPRINGER LECT NOTES, V751, P108
[8]  
Gross Benedict., 1983, Modular Forms, P87
[9]   HEEGNER POINTS AND DERIVATIVES OF L-SERIES [J].
GROSS, BH ;
ZAGIER, DB .
INVENTIONES MATHEMATICAE, 1986, 84 (02) :225-320
[10]   L-series with nonzero central critical value [J].
James, K .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 11 (03) :635-641