ON ACCUMULATED SPECTROGRAMS

被引:63
作者
Abreu, Luis Daniel [1 ]
Groechenig, Karlheinz [2 ]
Romero, Jose Luis [2 ]
机构
[1] Austrian Acad Sci, Acoust Res Inst, Wohllebengasse 12-14, A-1040 Vienna, Austria
[2] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
TIME-FREQUENCY LOCALIZATION; SPHEROIDAL WAVE-FUNCTIONS; EIGENVALUE DISTRIBUTION; UNCERTAINTY PRINCIPLES; FOURIER-ANALYSIS; OPERATORS; THEOREM; SPACE;
D O I
10.1090/tran/6517
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the eigenvalues and eigenfunctions of the time-frequency localization operator H-Omega on a domain Omega of the time-frequency plane. The eigenfunctions are the appropriate prolate spheroidal functions for an arbitrary domain Omega subset of R-2d. Indeed, in analogy to the classical theory of Landau-Pollak-Slepian, the number of eigenvalues of H-Omega in [1 - delta, 1] is equal to the measure of Omega up to an error term depending on the perimeter of the boundary of Omega. Our main results show that the spectrograms of the eigenfunctions corresponding to the large eigenvalues (which we call the accumulated spectrogram) form an approximate partition of unity of the given domain Omega. We derive asymptotic, non-asymptotic, and weak-L-2 error estimates for the accumulated spectrogram. As a consequence the domain Omega can be approximated solely from the spectrograms of eigenfunctions without information about their phase.
引用
收藏
页码:3629 / 3649
页数:21
相关论文
共 36 条
[1]   An inverse problem for localization operators [J].
Abreu, Luis Daniel ;
Doerfler, Monika .
INVERSE PROBLEMS, 2012, 28 (11)
[2]  
[Anonymous], INT C MATH
[3]   Painless Reconstruction from Magnitudes of Frame Coefficients [J].
Balan, Radu ;
Bodmann, Bernhard G. ;
Casazza, Peter G. ;
Edidin, Dan .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2009, 15 (04) :488-501
[4]   MEASUREMENT OF RANDOM TIME-VARIANT LINEAR CHANNELS [J].
BELLO, PA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1969, 15 (04) :469-+
[5]   Generalized anti-wick operators with symbols in distributional Sobolev spaces [J].
Boggiatto, P ;
Cordero, E ;
Gröchenig, K .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2004, 48 (04) :427-442
[6]   Time-frequency analysis of localization operators [J].
Cordero, E ;
Gröchenig, K .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 205 (01) :107-131
[7]   TIME FREQUENCY LOCALIZATION OPERATORS - A GEOMETRIC PHASE-SPACE APPROACH [J].
DAUBECHIES, I .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1988, 34 (04) :605-612
[8]   THE WAVELET TRANSFORM, TIME-FREQUENCY LOCALIZATION AND SIGNAL ANALYSIS [J].
DAUBECHIES, I .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (05) :961-1005
[9]   Uniform eigenvalue estimates for time-frequency localization operators [J].
De Mari, F ;
Feichtinger, HG ;
Nowak, K .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2002, 65 :720-732
[10]   Trace class norm inequalities for localization operators [J].
Du, JD ;
Wong, MW ;
Zhang, ZH .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2001, 41 (04) :497-503