Wave propagation modelling in 1D structures using spectral finite elements

被引:161
作者
Kudela, P.
Krawczuk, M.
Ostachowicz, W.
机构
[1] Polish Acad Sci, Inst Fluid Flow Machinery, PL-80952 Gdansk, Poland
[2] Gdansk Univ Technol, Fac Elect & Control Engn, PL-80952 Gdansk, Poland
[3] Gdynia Maritime Univ, Fac Navigat, PL-81345 Gdynia, Poland
关键词
D O I
10.1016/j.jsv.2006.07.031
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The application of spectral finite elements (SFE) to one-dimensional (1D) elastic wave propagation problems is presented. Travelling waves in an isotropic rod and Timoshenko beam have been investigated. The rod has been modelled using 1D SFEs while the beam has been modelled using 1D and 2D SFEs. Numerical results have been compared to those obtained from the classical finite element approach. This comparison highlighted the efficiency of the SFE method. The numerical results have been also verified experimentally. A high degree of accuracy has been observed. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:88 / 100
页数:13
相关论文
共 18 条
[1]  
[Anonymous], MULTIGRID METHODS AP
[2]  
Brebbia CA., 1984, BOUNDARY ELEMENT TEC, DOI DOI 10.1007/978-3-642-48860-3
[3]   A boundary element solution for a mode conversion study oil the edge reflection of Lamb waves [J].
Cho, YH ;
Rose, JL .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1996, 99 (04) :2097-2109
[4]   Ultrasonic pulse propagation in inhomogeneous one-dimensional media [J].
Cretu, N ;
Delsanto, PP ;
Nita, G ;
Rosca, C ;
Scalerandi, M ;
Sturzu, I .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1998, 104 (01) :57-63
[5]   CONNECTION MACHINE SIMULATION OF ULTRASONIC WAVE-PROPAGATION IN MATERIALS .1. THE ONE-DIMENSIONAL CASE [J].
DELSANTO, PP ;
WHITCOMBE, T ;
CHASKELIS, HH ;
MIGNOGNA, RB .
WAVE MOTION, 1992, 16 (01) :65-80
[6]  
Doyle J.F., 1997, WAVE PROPAGATION STR
[7]   Wave propagation analysis of frame structures using the spectral element method [J].
Igawa, H ;
Komatsu, K ;
Yamaguchi, I ;
Kasai, T .
JOURNAL OF SOUND AND VIBRATION, 2004, 277 (4-5) :1071-1081
[8]  
Kleiber M., 1985, FINITE ELEMENT METHO
[9]   Wave propagation in 2-D elastic media using a spectral element method with triangles and quadrangles [J].
Komatitsch, D ;
Martin, R ;
Tromp, J ;
Taylor, MA ;
Wingate, BA .
JOURNAL OF COMPUTATIONAL ACOUSTICS, 2001, 9 (02) :703-718
[10]   Simulation of anisotropic wave propagation based upon a spectral element method [J].
Komatitsch, D ;
Barnes, C ;
Tromp, J .
GEOPHYSICS, 2000, 65 (04) :1251-1260